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Abstract
A Fokker-Planck equation for transverse stochastic cool-

ing is presented, based on some simplifying assumptions.
The calculation of the drift and diffusion coefficients is de-
rived from the signal theory of the pick-up response and the
dynamics of the kicker response. The equilibrium transverse
action (emittance) distribution turns out to be exponential.
Furthermore there is a special solution of the time-dependent
equation for the case that the initial action distribution is
exponential, as well. The distribution remains exponential,
and the average action decreases exponentially towards equi-
librium. The cooling rate is equal to the standard textbook
rate.

THEORETICAL PRELIMINARIES
Fokker-Planck Equation

Let 2J be the usual one-particle emittance. J is an action
variable in Hamiltonian theory. φ is the betatron angle,
conjugate to J. The betatron phase advance between pick-up
and kicker is denoted µk − µp. The beta functions are βp
and βk .
The Fokker-Planck equation describes the evolution of

the distribution function Ψ(Jx, Jy, δp/p). It is a continuity
equation with a flux Φ in action space

∂Ψ

∂t
+ divΦ = 0 (1)

The flux is
Φ = FΨ −

1
2

D gradΨ (2)

The drift coefficient F describes the average cooling. It
generally has three components, e.g.

Fx = lim
τ→0

〈
δJx
τ

〉
(3)

The limit τ → 0 always leads to physical interpretation prob-
lems, as a rule of thumb one might say that no essential
change of the distribution function should happen during τ.
The diffusion tensor D describes the diffusion, its compo-
nents are

Dmn = lim
τ→0

〈
δJmδJn

τ

〉
(4)

The Fokker-Planck equation is frequently used for the
calculation of the longitudinal momentum distribution (see
[1] and references therein). In this work the transverse case
is presented. All details of the calculations of the drift and
diffusion coefficients are not given, they can be derived along
the lines presented in [1].

Simplifying Assumptions
In the following we make the assumption that longitudinal

cooling works independently of transverse cooling, and that
the longitudinal momentum distribution is given somehow.
Then the transverse cooling is decoupled and both cooling
pcrocesses can be described by one-dimensional Fokker-
Planck equations.

1. All kickers and pick-ups are placed at locations of zero
dispersion.

2. All electrodes can be described by a simple linear re-
sponse model.

3. There is no overlap between different Schottky bands.

4. Chromaticity is neglected.

Because of the decoupling between phase spaces, we de-
rive here a separate Fokker-Planck equation for horizontal
cooling, where the horizontal distribution is simply called
Ψ(J). We normalize it to 1. We also need the longitunal
distribution ψ(δp/p which we define to be normalized to
the number of particles N .

SIGNALS AND BEAM RESPONSE
Sensitivity and Single Particle Signals
The sensitivity S(Ω) is used for the description of the

quality of delivering accelerating voltages to a beam paricle
in a kicker electrode.
It is the ratio between the effective accelerating voltage

U (Ω) and the voltage Vk (Ω) at the input port of the kicker:

U (x, y,Ω) = S(x, y,Ω)Vk (Ω) (5)

S depends on the beam velocity and on the position of the
particle with respect to the electrode.
In the following it will be assumed that S is linear in x

over the full range of betatron amplitudes.

S(x, y,Ω) = xS′(Ω) (6)

The formalism becomes much more complicated if this sim-
plification is abandoned [2].
If such an electrode is used as a pick-up electrode and

if it is reciprocal, a particle with revolution frequency ω
produces a signal at the betatron sidebands

ωm,± = ω(m ±Qx ) (7)

where ω is the revolution frequency (which depends on the
longitudinal momentum via the well-known relationship
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δω/ω = ηδp/p), and Qx is number of horizontal betatron
oscillations per turn. The signal is

Up (Ω) =
QeZl

√
2Jx βxS′p (Ω)

4

+∞∑
m=−∞

exp (iΩt0) (8)

×
[
eiµx δ

(
Ω − ωm,+

)
− e−iµx δ

(
Ω − ωm,−

)]

where Zl is the line impedance at the output port.
The horizontal deflection after one pass through the kicker

follows from the Panofsky-Wenzel theorem

δpx =
Qe
iΩ

S′k (Ω)Vk (Ω) (9)

p is the particle momentum. For a single kick, the emittance
changes by

δJx =
Qe
iΩp

S′(Ω)Vk (Ω)
√

2Jx βx sin µx (10)

Voltage Power Density
The spectral voltage densityC(Ω) is the Fourier transform

of the voltage autocorrelation function R(τ) =< V (t)V (t +
τ) >. The brackets <> denote the expectation value. For
coasting beams the autocorrelation R is independent of t,
because V is a ’stationary process’.

With the mean emittance

< J >=

∫ ∞
0 JΨ dJ∫ ∞
0 Ψ dJ

(11)

the Schottky density at each pick up at the transverse har-
monics is

Cp (Ω⊥) =
(QeZl)2 ωβp

16π |mη |
���S
′
p

���
2
< J > ψ(δp/p) (12)

It is proportional to the mean emittance and to the momen-
tum density.
Another statistical signal is due to thermal noise. It is

often expressed by an effective temperature:

Cn =
1
2

ZlkBTeff (13)

Signal Combination and Amplification
The amplification chain (Fig, 1) consists of the signal

combination networks at the pick-ups and kickers and an
overall voltage gain.
We assume np pick-ups, connected such that they are

matched to the beam velocity. The voltage gain after power
combination is

gp =
√

np (14)

The electronic voltage gain is modeled as

G = G0 exp iΩTpk (15)
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Figure 1: Model of amplification chain.

where G0 is constant inside the cooling band. Tpk is adjusted
to the time of flight between pick-up and kicker for design
particle. For off-momentum particles

δTpk

Tpk
= −ηpk

δp
p

(16)

Here, ηpk = γ−2 − αpk must be calculated as a local value
from the local momentum compaction between pick-up (at
sp and kicker (at sk):

αpk =
1

sk − sp

∫ sk

sp

ds
D(s)
ρ(s)

(17)

where D is the dispersion function and ρ is the radius of the
closed orbit.

Then the effective overall accelerating voltage is

Uk = xS′k gk G gp Vp (18)

The effective overall accelerating voltage density becomes

Ck =
���xS′k

���
2
|gk |

2 |G |2
[���gp

���
2

Cp + Cn

]
(19)

TRANSVERSE COOLING
Equations for Transverse Cooling

In the following we use a notation

∑
m,±

=

+∞∑
m=−∞

∑
±

(20)

as we always sum over both sidebands at all harmonics.
The transverse drift then is

F⊥ = −
J (Qeω)2 Zl

16π2p

√
βp βk (21)

×
∑
m,±

±1
Ω

S′kgk G gp S′p

× exp
[
±i

(
µk − µp

)
− iηpk (m ±Q)ωTpkδp/p

]

In order to get a cooling effect, the amplification G must
be imaginary, i.e. there must be a 900 phase shift in the
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amplification chain. Also, as is well known, the betatron
phase shift µk − µp must be an odd integer multiple of π/2.
We define the dimensionless system gain

g⊥ =
(Qe)2 ωZl

8πpΩ

√
βp βk S′k gk G gp S′p (22)

Note that it is independent of J, but depends on frequency.
The definition Eq. (22) differs from the usual textbook defi-
nition [1] by a missing factor N as we shall discuss later.
With Eq. (22) the transverse drift becomes

F⊥ =
Jω
2π

∑
m,±

±g⊥ exp
[
±i

(
µk − µp

)
(23)

× −iηpk (m ±Q)ωTpkδp/p
]

We split the transverse diffusion into two terms: one is
due to Schottky noise, the second is caused by thermal noise:

D⊥ = DS + DH (24)

With Eq. (12) and Eq. (19) we get for the Schottky term

DS = J < J > ψ(δp/p)
ω

2π

∑
m,±

|g⊥ |
2

|mη |
(25)

In order get diffusion due to thermal noise, one has to replace
the term ���gp

���
2

Cp by Cn.

Dn = J
4kBTeff

(Qe)2 Zl βp
���gp

���
2

∑
m,±

�����
g⊥

S′p

�����

2
(26)

Altogether the drift and diffusion coefficients can be writ-
ten in the form

F⊥ = −CJ (27)
D⊥ = J (S < J > +H) (28)

where the cooling term C, the Schottky diffusion term S and
the thermal noise heating term H do not depend on J.
It is worth noting that both coefficients Eq. (27) and

Eq. (28) are proportional to J. Therefore, the flux Φ (see
Eq. (2)) vanishes at zero emittance. This satisfies the phys-
ical boundary condition that there can be no flux toward
negative emittances (see Fig. 2).

Transverse Equilibrium Emittance
The condition for equilibrium is

−F⊥Ψ∞(J) +
1
2

D⊥
∂Ψ∞
∂J
= 0 (29)

With the coefficients Eq. (27) and Eq. (28) we get

∂

∂J
(lnΨ∞(J)) =

∂Ψ∞/∂J
Ψ∞

=
2F⊥
D⊥
=

−2C
S < J > +H

(30)

This equation is solved by

Ψ∞(J) = Ψ0 exp
(
−

2C
S < J >∞ +H

J
)

(31)

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

momentum deviation at which
Fokker−Planck equation is calculated

δp/p

J

allowable phase space region

forbidden region of phase space

Figure 2: Notation for momentum distribution.

i.e. it is an exponential distribution with average emittance

< J >∞=

∫ ∞
0 JΨ∞ dJ∫ ∞
0 Ψ∞ dJ

=
S < J >∞ +H

2C
(32)

Ψ0 is a normalizing constant. Solving Eq. (32) for < J >∞
yields

< J >∞=
H

2C − S
(33)

The minimum equilibrium emittance is limited by the heat-
ing due to thermal noise (if no other heating mechanisms
such as intra-beam scattering are taken into acoount). To
maintain a normalized solution the condition 2C > S is
required. Under this condition Eq. (31) is equivalent to

Ψ∞(J) = Ψ0 exp
(
−

2C − S
H

J
)

(34)

with the normalization Ψ0 =< J >∞.

Time Dependent Exponential Solution
As the equilibrium transverse distribution is exponential

in case of the drift and diffusion coefficients Eq. (27) and
Eq. (28), it is reasonable to investigate the following problem:
if the initial distribution is exponential, will it remain to be
so forever? Hence we try the ansatz

Ψ(J, t) = α(t)Ne−α(t)J (35)

with the mean emittance

< J >=
1
α

(36)

The partial derivatives of the distribution function are

∂Ψ

∂t
= α̇

(
1
α
− J

)
Ψ (37)

∂Ψ

∂J
= −αΨ (38)

The Fokker-Planck flux becomes

Φ = F⊥Ψ −
1
2

D⊥
∂Ψ

∂J
=

(
−C +

S + αH
2

)
JΨ (39)

Because of
∂

∂J
JΨ = α

(
1
α
− J

)
Ψ (40)
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the Fokker-Planck equation ∂Ψ/∂t + ∂Φ/∂J = 0 is equiva-
lent to the ordinary differential equation

α̇

α
+

(
−C +

S + αH
2

)
= 0 (41)

confirming that Eq. (35) solves the Fokker-Planck equation
indeed. In terms of < J > (see Eq. (36)) we get the equivalent
equation

d
dt

< J > +
(
C −

S
2

)
< J > −

H
2
= 0 (42)

Because the time derivative in the Fokker-Planck equation
is applied only toΨ, but not toΦ, Eq. (41) remains valid even
if the coefficients C, S, and H are explicitly time-dependent,
as they are if

• the system amplification g⊥ is changed during the cool-
ing process,

• the transverse sensitivities ∂S/∂x are changed by mov-
ing (plunging) the electrodes,

• simultaneous longitudinal cooling is applied, changing
the distribution ψ(δp/p) (see Eq. (25)).

Equation (42) can be solved analytically with the solution
(holding only for constant coefficients)

< J > (t) = (J0 − J∞) e−t/τ + J∞ (43)

with the exponential decay time (not the instantaneous cool-
ing time)

1
τ
= C −

S
2

(44)

and the equilibrium emittance J∞ = H/(2C − S) which is
already known from Eq. (33). Note, however, that Eq. (31)
is more general, because the equilibrium distribution always
becomes exponential regardless of the initial distribution.
The instantaneous cooling rate is given by the quantity

α̇/α of Eq. (41), i.e.

1
τ⊥
= C −

1
2

S −
H

2 < J >
(45)

This relationship is the base of the following estimates.

COOLING RATE ESTIMATES
General Expression

From Eq. (23), Eq. (25) and Eq. (26) we get

C =
ω

2π

∑
m,±

±g⊥ exp
[
±i

(
µk − µp

)]
(46)

× exp
[
−iηpk (m ±Q)ωTpkδp/p

]

1
2

S =
ωψ(δp/p)

4π

∑
m,±

|g⊥ |
2

|mη |
(47)

H
2 < J >

=
1

< J >
2kBTeff

(Qe)2 Zl βp
���gp

���
2

∑
m,±

�����
g⊥

S′p

�����

2
(48)

The first term in this expression is due to the cooling effect in
the presence of undesired mixing. The second term is due to
Schottky noise heating including the effect of good mixing.
The last term is due to thermal noise heating. Equation (46)
is still rather general as the amplification term g⊥ is treated
as frequency dependent.

Approximations
In order to get a rough estimate of the expected cooling

rate, we make the following assumptions:

1. The system gain g⊥ is constant over the system band-
width W and zero outside. Denote by m1 and m2 the
harmonic numbers at the lower and upper limits of the
cooling band W . The harmonic number at midband is
denoted by mc = (m1 + m2)/2, the number of harmon-
ics inside the cooling band is ∆m = m2 − m1.

2. The betatron phase advance between pick-up and kicker
is exactly 900.

3. The real part of g⊥ vanishes.

4. The momentum distribution can be approximately writ-
ten ψ = N/(∆p/p). The quantity δp/p denotes the mo-
mentum deviation where the transverse rate equations
are calculated (Fig. 2), whereas ∆p/p is the total width
of the momentum distribution. This quantity is only
needed in the Schottky heating term of the rate Eq. (46).
It will reappear in the mixing number Eq. (53).

Undesired Mixing
In order to treat the effect of undesired mixing we intro-

duce the angle φu = ωTpkηpkδp/p such that the sum in the
cooling term of Eq. (46) becomes∑

m,±

± exp
[
±i
π

2
− imφu

]
(49)

= 4iRe
(

eim2φu − eim1φu

eiφu − 1

)

= 4i
cos

[(
mc −

1
2

)
φu

]
sin

[
∆m φu

2

]

sin
[
φu

2

]

≈ 4i∆m cos
[
mcφu

]
We have used the approximation m ± Q ≈ m. The last
approximation is valid if the undesired mixing is tolerable,
i.e. if φu � π/ (m2 + m1). To be rigourous we define the
undesired mixing number

B := cos
[
mcφu

]
B1 (50)

where the correction

B1 =
sin

[
∆m φu

2

]

∆m sin
[
φu

2

] (51)

is of the order of unity.
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Optimum Gain and Cooling Rate Estimate
The sum in the Schottky heating expression can be ap-

proximately written

m2∑
m=m1

1
m
≈ ln (m2/m1) (52)

This gives rise to the mixing number

M =
1

|η |∆p/p
ln (m2/m1)

m2 − m1
≈

1
mc |η |∆p/p

(53)

One gets the last approximation (F. Pedersen, D. McGinnis,
priv. comm.) by linearizing the logarithm according to
ln m12 ≈ ln mc ± (m2 − m1)/2mc .

The noise heating term is

h =
8kBTeff

Zl (Qe)2 ω
���gp

���
2
βp

���S
′
p

���
2
< J >

(54)

Then we can write instead of Eq. (46)

1
τ⊥
≈ 2W

[
2B |g⊥ | − (M N + h) |g⊥ |2

]
(55)

Equation (55) looks much like the standard textbook cooling
rate, except for the particle number N , which does not appear
in front, but only in the desired mixing term M . This is due
to a different definition of system gain Eq. (22), which should
reasonably not depend on N , because neither the coherent
cooling (see Eq. (23)) nor the thermal diffusion (see Eq. (26))
depend physically on the particle number.
The optimum system gain is

|g⊥ |opt =
B

M N + h
(56)

and the optimum cooling rate is(
1
τ⊥

)
opt
=

2W B2

M N + h
(57)

The quantities C, H and S from Eq. (27) and Eq. (28) are
related to B, M and U via the relationships

C = 4Wg⊥B (58)
S
2
= 2W |g⊥ |2 M N (59)

H
2 < J >

= 2W |g⊥ |2 h (60)

Remarks
• The noise to signal ratio h/N is the noise power at the
effective temperatureTeff divided by the Schottky power
of a beam of N particles with average emittance < J >
at one betatron sideband. If the emittance decreases
during the cooling process, h can be inhibited from
increasing too fast by using plunging electrodes. They
have the effect of increasing the electrode responses S′p
and S′

k
.

• One should note the 1/Ω dependence in the system
gain Eq. (22). If the sensitivity slope S′ is constant over
the bandwidth, then one has to increase the electronic
amplification G by 6 dB per octave in order to get a
constant system gain. This is a consequence of the
1/Ω-scaling of the transverse kicks strength due to the
Panofsky-Wenzel theorem Eq. (9).

CONCLUSIONS
1. We have given explicit expressions for the drift and

diffusion coefficients of transverse stochastic cooling.

2. We have expressed the system gain in terms of elec-
tronic parameters.

3. We have proved from very general assumptions that the
equilibrium emittance distribution is exponential.

4. We have proved that an initial exponential emittance
distribution remains exponential during the cooling
process.

5. We have presented a general, frequency-dependent
cooling rate equation.

6. We have shown that in the case of constant system gain
over a given bandwidth, we can reproduce the results
of standard stochastic cooling theory.

7. In this case, we have given explicit expressions for the
mixing number M and the noise heating term h.
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