Status of VORPAL Friction Force Simulations for the RHIC II Cooler

D.L. Bruhwiler,¹ G.I. Bell,¹ A. Sobol,¹ A. Fedotov,² I. Ben-Zvi² & V. Litvinenko²

Supported by US DOE Office of Science, Office of Nuclear Physics, under grant # **DE-FG03-01ER83313**

Bad Kreuznach, Germany September 10-14, 2007

1. Tech-X Corporation

2. Brookhaven National Lab

Overview

- We are considering unmagnetized high-energy cooling
 simulations of dynamical friction for RHIC II parameters
- Question arose at BNL cooling workshop (May, 2006)
 - Can VORPAL characterize the effect of magnetic field errors?
 - as a function of integrated transverse field amplitude?
 - especially, as a function of wavelength?
 - Physical intuition suggests the following (S. Nagaitsev)
 - small wavelengths should modify ρ_{min} (logarithmic effect)
 - · large wavelengths should increase effective rms e- velocities
- Our simulation results were difficult to interpret
 - this requires full understanding of finite-time effects
 - simple Coulomb log must be reconsidered for finite time
- Error-field & field-free simulations are now understood
 - beginning to re-examine many error-field simulations

Dynamical friction has been long understood

- Case of isotropic plasma, with no external fields, was first explained 65 years ago
 - S. Chandrasekhar, *Principles of Stellar Dynamics* (U. Chicago Press, 1942).
 - B.A. Trubnikov, Rev. Plasma Physics 1 (1965), p. 105.
 - NRL Plasma Formulary, ed. J.D. Huba (2000).

- Physics can be understood in two different ways
 - Binary collisions (integrate over ensemble of e-/ion collisions)
 - Dielectric plasma response (ion scatters off of plasma waves)
- Finite-time effects provide a new twist on old physics

Idea for Electron Cooling is 40 Years Old

- Budker developed the concept in 1967
 - G.I. Budker, At. Energ. **22** (1967), p. 346.
- Many low-energy electron cooling systems:
 - continuous electron beam
 - electrons are nonrelativistic & cold
 - electrons are magnetized in a solenoid field
 - suppresses transverse temperature & increases friction
- Fermilab has shown cooling of relativistic p-bar's
 - S. Nagaitsev et al., PRL 96, 044801 (2006).
 - 4.3 MeV e-'s (γ ≈8) from a customized DC source
 - electrons are *unmagnetized* (solenoid for focusing)
- RHIC II, eRHIC need "high-energy" cooler
 - − 100 GeV/n \Rightarrow γ ≈108 \Rightarrow 54 MeV bunched electrons
 - Cooling is less efficient; new parameter regime

Status of VORPAL friction force simulations...

COOL – Sep. 12, 2007 – Bad Kreuznach

The Parallel **VORPAL** Framework is used to Simulate the Microphysics of Electron Cooling

- Electromagnetic PIC for laser-plasma
 - Nieter & Cary, *J. Comp. Phys.* (2004).
- Electrostatic PIC for beams & plasma
 - Messmer & Bruhwiler, Comp. Phys. Comm. (2004)
- Algorithms for simulating electron cooling physics
 - Fedotov, Bruhwiler, Sidorin, Abell, Ben-Zvi, Busby, Cary & Litvinenko, Phys. Rev. ST/AB (2006).
 - Fedotov, Ben-Zvi, Bruhwiler, Litvinenko & Sidorin, New J. Phys. (2006).
 - Bell, Bruhwiler, Fedotov, Sobol, Busby, Stoltz, Abell, Messmer, Ben-Zvi & Litvinenko, "Simulating the dynamical friction force on ions due to a briefly copropagating electron beam," *J. Comp. Phys.*, in preparation.
- SRF Cavities, Electron guns, Dielectric structures (PBG)...
 - Nieter et al., J. Comp. Phys., in preparation.
 - Dimitrov, Bruhwiler, Smithe, Messmer, Cary, Kayran & Ben-Zvi, Proc. ICFA Beam Dynamics Workshop on Energy Recovery Linacs (2007), in press.
 - Werner & Cary, J. Comp. Phys., in preparation.
- Large software development team (Tech-X & CU)
 - C++/MPI, object-oriented, template techniques, multi-physics
 - parallel or serial; cross-platform (Linux, AIX, OS X, Windows)
- Actively used throughout the beam & plasma communities
 - BNL, JLab, Fermilab, LBL, ANL, some universities, also outside the USA
 - commercial customers
- Development and use has been supported by several agencies since 2000
 - US DOE Office of Science (HEP, NP, FES & ASCR)
 - NSF (original grant); DOD (AFOSR, OSD)

Status of VORPAL friction force simulations...

COOL – Sep. 12, 2007 – Bad Kreuznach

VORPAL

р. 5

VORPAL supports use of BETACOOL

BETACOOL code is used to model many turns

- A.O. Sidorin et al., Nucl. Instrum. Methods A 558, 325 (2006).
- A.V. Fedotov, I Ben-Zvi, D.L. Bruhwiler, V.N. Litvinenko, A.O. Sidorin, New J. Physics 8, 283 (2006).

- a variety of electron cooling algorithms are available

- in particular, models for the dynamical friction force
- many mechanisms for emittance growth are included
- VORPAL is used to study microphysics of friction
 - to increase understanding & make BETACOOL more effective

Physical Parameters from 2006 RHIC II Design

Parameter	Frame	Value
Electron Density, n_e	Beam	$9.50 imes 10^{13} \ e^-/m^3$
RMS $e^- x, y$ -velocity, Δ_x, Δ_y	Beam	$2.8 imes 10^5 \ m/s$
RMS e^- z-velocity, Δ_z	Beam	$9.0 imes 10^4 \ m/s$
Interaction time, $ au$	Beam	$2.47 \times 10^{-9} \text{ sec}$
90° collision impact parameter, ρ_{min}	Beam	$2.2 \times 10^{-7} \mathrm{~m}$
Mean Coulomb Log value, Λ	Beam	8.2
Relativistic γ	Lab	108
Relativistic $\beta = v/c$	Lab	0.99957
Undulator length	Lab	80 m
Undulator strength	Lab	10 Gauss or 1.0×10^{-3} Tesla
Undulator wavelength, λ	Lab	8 cm

Status of VORPAL friction force simulations...

ECH

COOL – Sep. 12, 2007 – Bad Kreuznach **p. 7**

Dynamical Friction, Coulomb log & Finite-time Effects

Perturbative calculations lead to Coulomb log

- Assume each e- trajectory is infinite and straight
 - integrate Coulomb force along trajectory to obtain $\delta v_{\perp} \sim \rho^{-1}$
 - integrating over all angles leads to zero
 - by symmetry, $\delta v_{\parallel} = 0$ for each trajectory
 - however, energy conservation requires $\delta v_{\parallel} \approx \delta v_{\perp}^2 / 2v \sim \rho^{-2}$
- Approximation is very good for large ρ
 - assumption of infinite trajectories not valid for finite $\boldsymbol{\tau}$
 - choose physically reasonable cutoff ρ_{max}
- Approximation breaks down for small ρ
 - choose cutoff $\rho_{\text{min}}\text{,}$ for which $\delta v_{\scriptscriptstyle \perp}$ = v_{rel} \rightarrow 90 deg scattering

Dynamical friction & finite-time effects on ρ_{max}

$$\mathbf{F} = -\frac{4\pi n_e k^2}{m_e} \int \log\left(\frac{\rho_{max}}{\rho_{min}}\right) \frac{\mathbf{v}}{|\mathbf{v}|^3} f(\mathbf{v}_e) d^3 v_e$$
$$k = Z e^2 / (4\pi\epsilon_0) \quad |\mathbf{v}| = \mathbf{v}_i - \mathbf{v}_e \quad |\rho_{min}| = \frac{k}{m_e |\mathbf{v}|^2}$$

- For $\omega_{pe}\tau >> 2\pi$ and $v_i << \Delta_e$
 - electron cloud screens ion charge; $\rho_{max} = \lambda_D = \Delta_e / \omega_{pe}$
- In opposite limit, $\omega_{pe}\tau < 2\pi$ (RHIC II param's)
 - no screening of ion charge; choose $\rho_{max} \sim max(v_i, \Delta_e) \tau$
 - or calculate Coulomb log with finite-length trajectories
 - completely removes logarithmic singularity at large ρ

$$\Lambda = \ln \left(\frac{\rho_{max}}{\rho_{min}} \sqrt{\frac{\rho_{min}^2 + d^2}{\rho_{max}^2 + d^2}} \right) \qquad \text{for} \quad \tau \to 0, \ \Lambda \to \ln(1) = 0$$
$$d = |\mathbf{v}_{rel}| \tau/2 \qquad \text{for} \quad \rho_{min} \ll d \ll \rho_{max} \quad \Lambda \to \ln(d/\rho_{min})$$

Status of VORPAL friction force simulations...

COOL – Sep. 12, 2007 – Bad Kreuznach **p. 10**

Finite-time effects limit # of collisions for small ρ

Poisson statistics predict likelihood of N_c collisions
 – for all impact parameters less than ρ

$$\begin{split} P_k = \frac{\lambda^k}{k!} e^{-\lambda} & P_{\geq 1} = 1 - P_0 = 1 - e^{-\lambda} \\ \lambda = n_e \langle v_{rel} \rangle \tau \pi \rho^2 = \mathbf{N_c} \end{split}$$

Status of VORPAL friction force simulations...

COOL – Sep. 12, 2007 – Bad Kreuznach **p. 11**

Finite-time effects on ρ_{min} lead to concept of ρ_{res}

- Friction force integrals assume, for all ρ
 - there are plenty of trajectories to sample $4\pi \ sr$
 - so perpendicular kicks average out
 - so longitudinal kicks accumulate correctly
 - and sufficient trajectories to sample e- velocities
- How many collisions are needed?
 - good agreement with simulations for $N_c = 120$

$$\rho_{res} = \sqrt{\frac{N_c}{\langle v_{rel} \rangle \tau \pi n_e}}$$

- for RHIC II parameters shown above
 - $\rho_{min} \approx 2.2 \text{ e-7 m}$ $\rho_{res} \approx 1.8 \text{ e-5 m}$
 - for $\,\rho_{max}\,{\sim}\,v_i\tau\,{\approx}\,7.5$ e-4 m $\,\rightarrow\,{>}20\%$ smaller Coulomb log

Review of Numerical Approach & Problem of Diffusion

Numerical Approaches for Electron Cooling Simulations

- Langevin approach to solve Fokker-Planck equation
 - uses Rosenbluth potential (or Landau integral)
- Fast multipole method (FMM) and tree-based algorithms
 - requires constant time step; inefficient for MD with a few close collisions
- 4th-order predictor-corrector "Hermite" algorithm
 - taken from astrophysical dynamics community
 - generalized to include solenoid field
 - used successfully in molecular dynamics (MD) approach with a few ions
 - didn't parallelize well, so we used a task farming approach
 - astrophysicists use special "Grape" hardware to parallelize
- Semi-analytic binary collision model
 - also MD approach; very close connection to "Hermite" algorithm above
 - accurately models arbitrarily strong Coulomb collisions
 - arbitrary external fields included via 2nd-order operator splitting
 - scales well up to ~128 processors
- Electrostatic particle-in-cell (PIC)
 - very difficult to capture close Coulomb collisions (fine mesh, noise)
 - can rely on PETSc/Aztec00 for effective use of petascale hardware
 - possibility to combine with "binary collision" model

Status of VORPAL friction force simulations...

COOL – Sep. 12, 2007 – Bad Kreuznach **p. 14**

Molecular dynamics approach – model each e-

Diffusive spreading of ion trajectories obscures any velocity drag due to dynamical friction.

For many millions of turns, friction forces will dominate diffusion.

COOL – Sep. 12, 2007 – Bad Kreuznach **p. 15**

Diffusive dynamics can obscure friction/drag

- Numerical trick of e-/e+ pairs can suppress diffusion
 - idea came from Alexey Burov
 - simulate with e-/e+ pairs that have identical initial conditions
 - sign of external fields must be flipped for the positrons
 - friction force, independent of sign of charge, is unchanged
 - diffusive kicks are approximately cancelled
- also use ~1,000 trajectories for each electron
 - RMS is reduced by $N_{traj}^{1/2}$ from that of the original distribution
 - from the Central Limit Theorem
- Use of many trajectories sometimes changes results !!
 - always true for field free case:

$$\rho_{res,sim} =$$

$$= \sqrt{\frac{N_c/N_{traj}}{\langle v_{rel} \rangle \tau \ \pi \ n_e}} = \rho_{res} / \sqrt{N_{traj}}$$

- in presence of external fields
 - some other limitation on ρ_{min} may hide this problem
 - also,higher effective e- velocity can decrease ρ_{res}

Status of VORPAL friction force simulations...

COOL – Sep. 12, 2007 – Bad Kreuznach **p. 16**

CLT is used to pull <F> and error bars from binned data

COOL – Sep. 12, 2007 – Bad Kreuznach **p. 17**

Diffusion vs. Dynamical Friction

Diffusion of gold ions, as measured by the growth of the RMS velocity

Finite-time effects on field-free simulations

Failure to sample small ρ reduces friction force

Numerical effects of domain size are understood

Longitudinal friction versus box size

Effects of Helical Undulator

Unmagnetized high-energy cooling w/ undulator

- Purpose of the helical undulator magnet
 - provides focusing for electrons
 - suppresses e-/ion recombination
 - Modest fields (~10 Gauss) effectively reduce recombination via 'wiggle' motion of electrons:

$$\rho_{osc} = \frac{\Omega_{gyro}}{k_w^2 v_{beam}} \sim 1.4 \times 10^{-3} \lambda_w^2 [m] B_w [G] / \gamma$$

What's the effect of 'wiggle' motion on cooling?
 – increases minimum impact parameter of Coulomb log

$$\rho_{\min} \rightarrow \max(2\rho_{osc}, \rho_{res})$$

VORPAL simulations verify effect of undulator

- Coherent e- wiggle motion
 - increases the effective minimum impact parameter
 - dynamical friction force is only reduced logarithmically

Effects of Magnetic Field Errors

Simple model of single-wavelength error fields

$$B_{y}(x, y, z) \approx B_{err} \sin(2\pi z/\lambda)$$

$$M = \max\left[\int_{-\infty}^{z} dz \ B_{y}(x, y, z)\right] = \lambda B_{err}/2\pi$$

$$B_{err} = 2\pi \ M/\lambda \qquad 10 \ \text{cm} < \lambda < 80 \ \text{m} \qquad 10^{-6} \ Tm < M < 2x 10^{-5} \ Tm$$

Lorentz transform to beam frame: $E'_{x}(x, y, t) \approx \beta \gamma c B_{err} \sin(2\pi\beta c t/\lambda)$

e-oscillations:
$$v_{err} = \frac{e}{m_e} M$$
 $(\approx 2x10^5 \text{ m/s for } M = 10^{-6} Tm)$
 $x_{err} = \frac{\lambda}{2\pi\beta\gamma c} v_{err} (\approx 9x10^{-7} m \text{ for } M = 10^{-6} Tm, \lambda = 1 m)$

Long wavelengths increase effective e- temp

p. 27 COOL – Sep. 12, 2007 – Bad Kreuznach

Short wavelengths increase effective ρ_{min}

Conclusions and Future Work

- Finite-time effects reduce field-free friction force
 - modified Coulomb log should be used
 - approximately equivalent to choosing $~\rho_{\text{max}}$ ~ v_{\text{rel}} τ / 2
 - effective ρ_{max} is limited by simulation box size (understood)
 - $\rho_{\text{eff}} \rightarrow \max(\rho_{\text{min}}, \rho_{\text{res}}, 2\rho_{\text{osc}}, 2x_{\text{err}}, ...)$
 - effect of ρ_{res} was not understood previously
 - >20% effect for RHIC II parameters
 - ρ_{res} artificially decreased by use of many trajectories in simulations
 - this complication needs to be removed by improved noise reduction
- Effect of helical undulator magnets is understood
 - friction reduced logarithmically; $\rho_{min} \rightarrow max(\rho_{res}, 2\rho_{osc})$
- Single-wavelength error field simulations
 - short wavelengths: $\rho_{min} \rightarrow 2x_{err}$ (logarithmic)
 - long wavelengths: $v_{e,rms} \rightarrow \sqrt{v_{e,rms}^2 + v_{err}^2}$
- New understanding should be included in BETACOOL Status of VORPAL friction force simulations... COOL – Sep. 12, 2007 – Bad Kreuznach p. 29

Acknowledgements

We thank O. Boine-Frankenheim, A. Burov, Y. Derbenev, A. Jain, S. Nagaitsev, A. Sidorin, G. Zwicknagel & members of the Physics group of the RHIC Electron Cooling Project for many useful discussions.

We also acknowledge assistance from the VORPAL team: J. Carlsson, J. R. Cary, B. Cowan, D.A. Dimitrov, A. Hakim, P. Messmer, P. Mullowney, C. Nieter, K. Paul, S.W. Sides, N. D. Sizemore, D. N. Smithe, P. H. Stoltz, S. A. Veitzer, D. J. Wade-Stein, G. R. Werner & N. Xiang.

Work at Tech-X Corp. was supported by the U.S. DOE Office of Science, Office of Nuclear Physics under grants DE-FG03-01ER83313 and DE-FG02-04ER84094. We used computational resources of NERSC, BNL and Tech-X.