COOL'07 Bad Kreuznach, Germany, September 10-14, 2007

Lattice Considerations for the Collector and the Accumulator Ring of the FAIR Project

A.Dolinskii, GSI, Germany

FAIR Facility for RIBs and pbars

SIS18

p-linac

UNILAC

SIS100, SIS300

Super-FRS

to av

LAIR

pbar target

HESR

CR/RESR

Collector and Accumulator Ring

Stochastic cooling technique will be installed in both rings.

Stochastic Cooling

transverse cooling rate
$$\frac{1}{\tau} = \frac{W}{2N} [2gB - g^2(M + U)]$$

undesired mixing
$$B = \cos\left(m_c k \eta_{pk} \frac{\delta p}{p}\right) \qquad M = \left(m_c \eta_{kp} \frac{\delta p}{p}\right)^{-1} \text{ desired mixing}$$

$$\eta = \left| \frac{1}{\gamma^2} - \alpha_p \right| \qquad \qquad \alpha_p = \frac{1}{\gamma_{tr}^2} = \frac{1}{C} \oint \frac{D(s)}{\rho} ds \qquad \qquad \alpha_p = 1/\gamma_{tr}^2$$

D(s) - dispersion function of the ring γ - Lorentz factor $\gamma_{tr} \approx \gamma$ for bad mixing

 $\gamma_{tr} >> or << \gamma$ for good mixing

The mixing dilemma

Ring layout for stochastic cooling

Split ring :

- one arc with local $\gamma_{tr}\!\!\approx\!\gamma$
- another arc with:
 - a) high local $\gamma_{tr} \gg \gamma$
 - b) very low local $\gamma_{tr} \leftrightarrow \gamma$

(There is idea to have even imaginary γ_{tr} (Senichev's lattice of the HESR). But the ring lattice must follow certain additional requirements (arc. periodicity, number dipoles, phase advance, high dispersion?

Advantages: high dynamic aperture after chromaticity correction, good mixing, flexibility to get optimal γ_{tr} with respect to the S.C. and optical ring properties, increasing the micro-wave stability threshold).

Symmetric ring: one has to find optimal γ_{tr} to have effective stochastic cooling (see talk given by F. Nolden)

Collector Ring: CR

The CR must be operated at static magnetic field corresponding to BR=13 Tm

1. Cooling of secondary beams of radioactive ions (RI)

2. Cooling of antiproton beams (Pbar)

Final RI beam

3. Mass spectrometer of radioactive ions RI (TOF)

CR: Requirements to the ring optic

- * Three operation mode require three different ion optics of the ring
- * Phase advance between pick-ups and kickers for stochastic cooling must be quantum number $\Delta\mu \approx \pi (2n+1)/2$
- * One has to control phase advances between inj./extr. devices
- * Chromatic correction in all mode operation
- * The dispersion free straight sections in all mode operation

* One needs 12 quadrupole and 7 sextupole families in order to have flexibility in optic variation and chromatic correction.

Three mode operation (optimal γ_{tr} for symmetric ring) Isochronous mode (γ_{tr} =1.8, γ =1.8) Rib mode (γ_{tr} =2.7, γ =1.8) Pbar mode (γ_{tr} =3.6, γ =4.2)

CR: Split ring

CR: Symmetric ring

CR: Chromatic correction

7 independently powered sextupole families are needed for

- * Chromaticity correction
- * Control of the dispersion function over full momentum range (-3% +3%)
- * Control chromaticity (as low as possible over full momentum range (-3% +3%)

* Avoiding synchrobetatron coupling

2 families of the octupole correctors for minimizing of the fringe field influence in the isochronous mode operation

CR: Chromatic correction

Radioactive Ion mode

CR: Dynamic aperture with only chromaticity sextupoles

CR: Dynamic aperture

Dynamic aperture with field imper. up 9th order : MAD simulation (Turns=1000)

CR optic for RIB's ($\Delta p/p=0$)

A. Dolinskii, P. Beller , M. K.Beckert, B. Franzke, F. Nolden M. Steck , Optimized lattice for the Collector Ring (CR), **NIMA 532 (2004) 483**

CR: Dynamic aperture

Dynamic aperture with field imperfection up 9th order Fringe field effect of quadrupole magnets is included

The relative multipole errors of the CR magnets, unit $\times 10^{-4}$

	Dipole (r=70 mm)	Quadrupole (r=200 mm)
1	10 ⁴	0
2	0.0334	10 ⁴
3	-3.553	0
4	-0.1302	-0.203
5	-0.854	0
6	0.1322	-1.482
7	0.0197	0
8	-0.0839	-0.0095
9	-0.04224	0
10	0.1171	0.752

Particle tracking: 1000 turns

RESR lattice

RESR

Stochastic Cooling, Accumulation Scheme

- Two transverse cooling systems (horizontal, vertical)
- Three longitudinal systems (hand-over system, stack-tail system, stack-core system)

RESR: Lattice functions

- The lattice enables a flexible choice of the γ_{tr} from 2.3 up to 6.4 by quadrupoles adjustment, while betatron tunes remain unchanged.
- This feature gives possibility even to ramp quadrupoles during cooling in order to have an optimal value of γ_{tr} depending on the momentum width.
- Straight sections with a large dispersion and small vertical betafunction
- Good properties with respect to the injection/extraction procedures
- Deceleration of RIBs or antiprotons is simplified due to injection always below transition energy.
- In this layout one can implement also a split-ring optic

RESR: Beam Parameters

Antiproton beam (pre-cooled in the CR)

Injection energy	3 GeV
Momentum spread (20)	< ±0.1 %
Horizontal emittance (20)	< 5 mm mrad
Vertical emittance (20)	< 5 mm mrad

Accumulation rate $3.5 \times 10^{10} h^{-1}$ Accumulation time 3.5 hNumber of particles 10^{11}

RIB Parameters (pre-cooled in the CR)

Injection energy [MeV/u]	740 MeV/u	
Extraction energy	100 - 740 MeV/u	Deceleration ramp rate - 1 T/s
Horizontal emittance (20)	< 0.5 mm mrad	
Vertical emittance (20)	< 0.5 mm mrad	
Momentum spread (20)	< ±0.05 %	