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[Liouville’s theorem

Suppose a dynamical system of multi-particles interacting each other.
Define a probability density F in I'-space (q,, 45, ---, 4,; P Po» ---» P,)); FdT
(dU =dq,dq,dq,dp,dp,dp, ) is the probability of finding the system in
the region (g, ¢, + dg,) and (p,, p, + dp,) where i=1,2,....,n

Provided that ¢.’s and p.’s satisfy the Hamiltonian equations of motion,
it is possible to'show :

n

Zq, Zp,
j =l

=
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Emittance

Emittance is the most important parameter representing the beam quality.

In standard accelerator theories, we explore the dynamical behavior of a
beam in 6D phase space spanned by canonical coordinates (x, y, z ; p,. p,. p.)-
The particle distribution function fin u-space obeys
Df_of, LOf f Of s of s O _ (afj
col

7=—+p =—+p, :
Ds 85 8x ay P " b op, - dp. \Os

far
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[Emittance preservation

In many cases of interest to us, the collision term (in other words,
the effects of intra-beam scattering) is negligible because an ordinary
beam is very hot and thin.

D
i
Ds

In order to improve the beam quality, we have to introduce dissipative
interactions ( ) into an accelerator.

Typical electromagnetic elements (magnets, rf cavities, etc.) only provide
conservative forces that never affect the 6D volume of a beam.

Beam cooling is very difficult in practice.

I

Only few cooling techniques have been developed so far.
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Why cooling?

e The volume occupied by a beam in phase space is the
measure of beam quality.

e A particle accelerator is, in general, a conservative
dynamical system.

We have to introduce a dissipative force into an accelerator,
in order to improve the beam quality for users.
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Cooling and damping

e Transverse projected emittances o _
conventionally defined in x-x’ and y-y’ longitudinal momentum gain
phase planes damp when the beam is
accelerated (adiabatic damping).

e Inone word, this is because a pair of particle jseses=="T i \ X
variables (x, x’) or (y, y’) are not canonical I X
conjugate where the prime stands for s-
derivative, i.e. ’ = d/ds.

e Since a beam is accelerated in general b
a conserva

fields), the
unchanged

e —

>
Design Orbit
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Non-dissipative manipulation of (-space




Concept of emittance n

-

“Cooling” is difficult because the 6D volume

of a beam is invariant in Hamiltonian systems.

I

\It is much easier to manipulate 2D subspaces (emittance projections).)

We often consi
6D emitts
Projectea

Longitudinal
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Coupling storage ring

2D subspaces are connected through various coupling potentials artificially controllable.
Not only a full emittance exchange but also a partial emittance transfer are feasible.
It is possible to develop various correlations between the three degrees of freedom.

Coupling Sources

Transport system /

(matching to the ring acceptance)

Pre-accelerator
(optimization of the injection energy) Accelerator
(if necessary, for the next system)

Beam Source /
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Model

For the sake of simplicity, ignore the following effects:
e Interparticle interactions through the Coulomb fields
e Details of the lattice design (smooth approximation)
e Radiation, wakefields, etc.

The Hamiltonian of the dynamical system of interest to us can then be written as

H : 2+(v‘j2x2 +1 s Yy 2 . +1 s V'T P+ o.(x )
= — ) — _— . — ) _— 3 = Z . s 7Z;S-
> P, R > P, R Y > P, R XY
(v, Vi v) : tunes /

R : average radius of the coupling ring Example:
: artificial coupling potential m_n
}. IfICI upling p [ 6 =gx"z
In general, the coupling constants g, and g, are
s-dependent; it is possible to change gradually
or switch on and off individual coupling terms.

0,(s—s)+gy"7"0,(s—s,)
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Resonant emittance transfer

e The coupling between the degrees
of freedom can be strengthened by
increasing the coupling constants.

€

The enhancement of coupling is, /e
however, almost useless for the ' (Vo v,,v.)= (1.7, 1.2, 0.05)

T T T

present purposes. 0 40 50 60 70

Tum number

Scaled s Emittance

In order to achieve an efficient
emittance transfer, the coupling
ring must operate near resonances:

myv_—nv_ = integer,

Scaled mms Emittance

mv, —nV_= integer,

for the case where T (v v,. V)= (L1, L1, 0.1)

| | | | [
— m _n JI /,’” n v« 30 40 50 60 70
(Z)(' 81X < 5/)(LS ‘Sl)+ 82Y 2 5/’(‘S 32)° Tum number

In both cases, R=1and g, =g, =0.01.
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Invariants

o 2D(g,0rg,=0)

+ — = const.
n

<l

e 3D (full coupling)

Scaled s Emmttance

E TE &
= — 4+ — = const. . : l ,
n 100 150 200

Tum number

13[) —

We have again assumed:
(D[, e glxmzug/) (S . SI ) + gzym 7!16/) (S . Sz )

Different forms of the invariant can be found
for different coupling potentials.

n

[ R j[ R J . L
gl — — | = const. = =
VvV, V. . T T T

l l
60 80 100 120 140
(8=g8=8, V=V _=V) Tum number

Scaled s Emittance
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[Equilibritm emittance ratio

In a 2D case where g, =0, we can find another invariant by averaging the single-
particle motion near resonance, i.e. A=(mv_—nv. —/()/R=0:

mn

AJ+h J"*(1—J)"?siny for m+n=odd,

mn

_ {AJih J"?(A=J)"*cosy for m+n=even,

where h,,, is a constant parameter, J = ¢,/ nl,, and y is the relative phase variable
conjugate to J. H can be considered as the Hamiltonian of the averaged system.
The equilibrium emittances are then given by

2

L

m
€, = [2[)’ €, [2[)-
m-+n m-+n

Assuming that an incident beam eventually come close to this equilibrium state,
1+ﬂ5;(0) 1+ﬁgx(O)
€, n €.(0) E. m €_(0)
— : ‘— - pra
£,(0) G £,(0) [ m

m n
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Emittance transter and correlation

)

The off-diagonal sub-matrices
S,, and S, describe correlation.

(xp,)
(p?)

Projected emittances are defined as ¢, = detS  and ¢, = detS

The emittance (the 4D volume) is invariant and given by &5 = detS

With a transfer matrix M, the second moments are transformed to MSM".

Even if we start with an ordinary “uncorrelated” beam, the elements of
the off-diagonal matrices become non-zero during an emittance transfer
process where ¢, and ¢+ ¢ are both conserved. (At each moment of

a full emittance exchange, the correlation disappears.)
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[Cinear correlation in phase space

INITIAL DISTRIBUTION

Linear coupling (m=n=1) : el .. esd
v, v,v,)=(.1 11, 0.1) |
R=1

g =8, =001

0.0 4

Pz(scaled)

-3 -2 -1 0
z(scaled) x (scaled)

Initial emittance ratio :

o ~o
| ]

DISTRIBUTIONARTERTACN AT BRMTHTANIRE EXCHANGE

.0

0.5+

Scaled s Emittance
(e (=) (= (e

(] i - (@3] [a's]

| I | |

0.0+

o
o

| | | |
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Tum number

-1 0 3 =18 =5 § f -3 -2 -1 0
x (scaled) x (scaled)
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Nonlinear correlation in phase space

INITIAL DISTRIBUTION

Nonlinear coupling (m=1,n=2) :
Vv, v.)=(12, 12, 0.1)
R=1 T

g =8 =1

Initial emittance ratio : ¢,/ & =0.1

1.0 4
0.5 4

0.0 4

Scaled rms Emittance

|
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Tum number - -+ i 2 - 0
Py (scaled)
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Phase-space evolutio
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Coupling sources

The electromagnetic fields of typical coupling sources can be derived from
vector potentials of the form A =(0. 0, A ).

It is straightforward to develop linear and nonlinear couplings between the two
transverse directions; we can employ various magnets such as a solenoid (linear),
a skew quadrupole (linear), a sextupole (third-order), an octupole (fourth-order), etc.

For instance, A. = g,,,,%v0,(s) for a skew quadrupole magnet.

In order to couple the transverse motion with the longitudinal motion, we employ
radio-frequency devices or momentum dispersion.

Linear coupling rf cavity (rectangular) : A. = g xsin(®?)d,(s)

Nonlinear coupling rf cavity (cylindrical): A ~g J {Cmn LjCOS(H’ZQ)Sin(wT)5,,(S)

0

(T™,,,,-mode operation )
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Hamiltonian

e Coupling potential

q 2 r,

(Skew quadrupole) (Linear coupling cavity) (Third-order coupling cavity)

ol Vi(rx) . |2 : gy
A = Po” 4 X,\’gp(s —S5,)+ _I(ﬂjsm(wf +0, )5/)(3 —5)+ __{1 - (ﬁij ]Sln(a)[ + 9, )5/)(S =5;)
= _p . 0 :

e Hamiltonian in betatron space

D\ @EY P+p> 1. . .,
{ = ][ ] +l' Py +—(Kx"+K)y)
o P )\ By 2 2 ’

v, [ o, . T T,(. oD ).
+— {l// (D»\/)}\—D}\x)} 0,(s—s,)+ R’(,\’Jr ' AE])@V(S—S(/)

ﬁ() c

V(. D~ . . N
_Tdh x+w 2 AE —gDp —-D’x) 0 (s—s,)
l// XL x X P 1
Boc , Boc

V, | ; ~ oD_ - " ; ol A @ . .
_ 4% l—[g”j (,H £ AEJ —(g”j vy {1//—(D\p\—Df.x*)}@,(s—sz).
wp, 2r, ﬁoc 2r, ﬁn('

Canonical variables : (&, y,

20)/70 o€

awp,
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Application to FEL




Necessary conditions

1+ K?
Resonance Condition for FEL : A1 = (1 — V—j/’L ey A,
C Y

( K is the normalized strength of the undulator. )

The transverse normalized emittance g, of the electron beam
must be less than 1/ 4r.

The energy spread of the electron beam must be less than the
FEL parameter p.

The current of the electron beam should be high so as to make
the FEL parameter large and the saturation distance short.
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[Emittance optimization

The recent progress of accelerator 10 4 GENESIS simulation
technologies has made it feasible to ] s
produce a high-quality electron beam with
a very low longitudinal emittance.

The FEL gain is then limited mainly by the
transverse beam quality.

2
:
g
E=]
5
S

——before
after
nonlinear transfer

1 I
20 30 40

Example: third-order emittance transfer z [m]

4x107° - ,
) — V. = Integer

Radiation wavelength A [nm]

Beam energy [GeV]

Peak current [A]

Undulator period 4, [cm]

Nommalized rms emittance [m rad]

Undulator parameter K

| ' | ' |
400 800 1200

Tum number
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Beam conditioning

The FEL resonance condition for an electron
with a finite transverse amplitude can be
given by

2

1+K*> 2 2J.
—[ i J"'+ Jl

— -
Y’ B. B,

where J_ . are the transverse actions.

x()
The energy (y) of each individual electron is
different from the ideal design value ().

Substituting Ay= y— v, into the above
equation, we find that the number of ~34%10° m"
resonant electrons increases considerably
when the beam has the following correlation: , ! 5 20
J +J [nm
Ay =xJ t+k.J, x Ty [om]
Y . i Radiation wavelength A = 6 nm

where k,,, are the conditioning parameters; A, =2cm; K =1.14 nm ; Beam energy=1 GeV
when «, = k,, we have k, = (4,/ 1)/ 2p.. Transverse normalized emittance £ =¢,=3 um
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A possible conditioning in a coupling ring

Third-order emittance transfer (im =2, n=1)
100x107%
80 —

60 —
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Phase-space evolutio
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GENESIS result

12| Third-order manipulation Conditioned beam
i+ (output from a coupling ring) ;

1968 —
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1962 - "
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1958 — - -

jy lllllll

Original beam
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Radiation power [W]
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SUummary

Non-dissipative manipulation of charged-particle beams
should be useful in practice.

An efficient emittance transfer is achievable by resonantly
coupling the degrees of freedom.

A coupling storage ring enables one to optimize the ratios of
three projected emittances for specific purposes.

Various linear and nonlinear correlations in phase space can
naturally be developed during an emittance transfer process.
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