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LiouvilleLiouville’’s s theoremtheorem

 Suppose a dynamical system of multi-particles interacting each other.
 Define a probability density F in Γ-space (q1, q2, …, qn; p1, p2, …, pn); FdΓ

( dΓ = dq1dq2
…dqndp1dp2

…dpn ) is the probability of finding the system in
the region (qi, qi + dqi) and (pi, pi + dpi) where i = 1, 2,…, n.

 Provided that qi’s and pi’s satisfy the Hamiltonian equations of motion,
it is possible to show

n = 3N for a charged-particle beam consisting of N particles.
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An important statement of the incompressibility
of the flow in phase space !

is an invariant.d!"
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EmittanceEmittance

 Emittance is the most important parameter representing the beam quality.
 In standard accelerator theories, we explore the dynamical behavior of a
beam in 6D phase space spanned by canonical coordinates (x, y, z ; px, py, pz).

 The particle distribution function f in µ-space obeys

Beam emittance  6D phase-space (µ-space) volume
occupied by a beam.

The collision term appears in µ-space;
thus, strictly speaking, the emittance is not
conserved even without dissipation.

is not an invariant !dµ!
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Emittance Emittance preservationpreservation

In many cases of interest to us, the collision term (in other words,
the effects of intra-beam scattering) is negligible because an ordinary
beam is very hot and thin.

Df

Ds
! 0 : Emittance is an approximate invariant in accelerators !

✔ In order to improve the beam quality, we have to introduce dissipative
    interactions (cooling effect) into an accelerator.
✔ Typical electromagnetic elements (magnets, rf cavities, etc.) only provide
    conservative forces that never affect the 6D volume of a beam.
✔ Beam cooling is very difficult in practice.

Only few cooling techniques have been developed so far.
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Why cooling?Why cooling?

 The volume occupied by a beam in phase space is the
measure of beam quality.

 A particle accelerator is, in general, a conservative
dynamical system.

A smaller volume means a higher quality.

The beam volume in 6D phase space is
an approximate invariant.
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We have to introduce a dissipative force into an accelerator,
in order to improve the beam quality for users.



Cooling and dampingCooling and damping
 Transverse projected emittances
conventionally defined in x-x’ and y-y’
phase planes damp when the beam is
accelerated (adiabatic damping).

 In one word, this is because a pair of
variables (x, x’) or (y, y’) are not canonical
conjugate where the prime stands for s-
derivative, i.e. ’ ≡ d/ds.

 Since a beam is accelerated in general by
a conservative force (such as RF electric
fields), the 6D emittance is certainly
unchanged.

Do not confuse adiabatic damping
with cooling !
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Non-dissipative manipulation of Non-dissipative manipulation of µµ-space-space



Concept of Concept of emittance emittance manipulationmanipulation

 We often consider projections of the
      6D emittance onto 2D phase planes.
 Projected emittances of a beam are
      defined in x-px, y-py, and z-pz phase planes.
 In general, projected emittances are
      not invariant; it is easy to change them
      by introducing coupling potentials that
      correlate the degrees of freedom.

Design orbit

Vertical

HorizontalLongitudinal
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“Cooling” is difficult because the 6D volume
of a beam is invariant in Hamiltonian systems.

It is much easier to manipulate 2D subspaces (emittance projections).



Coupling storage ringCoupling storage ring

 2D subspaces are connected through various coupling potentials artificially controllable.
 Not only a full emittance exchange but also a partial emittance transfer are feasible.
 It is possible to develop various correlations between the three degrees of freedom.
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A COMPACT STORAGE RING FOR THE OPTIMIZATION
OF CHARGED-PARTICLE BEAMS IN 6D PHASE SPACE

Beam Source

Optimized Beam

Transport system
(matching to the ring acceptance)

Pre-accelerator 
(optimization of the injection energy)

Coupling Sources

Accelerator
(if necessary, for the next system)



ModelModel

For the sake of simplicity, ignore the following effects:
 Interparticle interactions through the Coulomb fields
 Details of the lattice design (smooth approximation)
 Radiation, wakefields, etc.
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The Hamiltonian of the dynamical system of interest to us can then be written as
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(νx, νy, νz) : tunes
       R       : average radius of the coupling ring
              φc       : artificial coupling potential
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In general, the coupling constants g1 and g2 are 
s-dependent; it is possible to change gradually
or switch on and off individual coupling terms.



Resonant Resonant emittance emittance transfertransfer
 The coupling between the degrees
of freedom can be strengthened by
increasing the coupling constants.

 The enhancement of coupling is,
however, almost useless for the
present purposes.

 In order to achieve an efficient
emittance transfer, the coupling
ring must operate near resonances:
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Off resonant case

On resonant case
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In both cases, R = 1 and g1 = g2 = 0.01.
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InvariantsInvariants

 2D ( g1 or g2 = 0)

 3D (full coupling)

I
2D

!
"
x(y)

m
+
"
z

n
= const.

I
3D

!
"
x
+ "

y

m
+
"
z

n
= const.

Different forms of the invariant can be found
for different coupling potentials.
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Third-order emittance transfer ( m = 1, n = 2 )

2D

3D
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Equilibrium Equilibrium emittance emittance ratioratio
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In a 2D case where g2 = 0, we can find another invariant by averaging the single-
particle motion near resonance, i.e.                                        :

H =
!J ± h

mn
J
n /2
(1" J )m /2 cos# for m + n = even,

!J ± h
mn
J
n /2
(1" J )m /2 sin# for m + n = odd,

$
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&

where hmn is a constant parameter, J = εz / nI2D and ψ is the relative phase variable
conjugate to J.      can be considered as the Hamiltonian of the averaged system.
The equilibrium emittances are then given by
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Emittance Emittance transfer and correlationtransfer and correlation
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✔ Projected emittances are defined as                    and                  .

✔ The emittance (the 4D volume) is invariant and given by                  .          

✔ With a transfer matrix M, the second moments are transformed to MSMT. 
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Example (linear case) The off-diagonal sub-matrices
Sxy and Syx describe correlation.

Even if we start with an ordinary “uncorrelated” beam, the elements of
the off-diagonal matrices become non-zero during an emittance transfer
process where ε4D and εx + εy are both conserved. (At each moment of
a full emittance exchange, the correlation disappears.)
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Linear correlation in phase spaceLinear correlation in phase space

DISTRIBUTION AT 40TH TURN

INITIAL DISTRIBUTION
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DISTRIBUTION AFTER A FULL EMITTANCE EXCHANGE
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Example 
Linear coupling ( m = n = 1 )

Initial emittance ratio : εx(y) / εz = 10

x-pz



Nonlinear correlation in phase spaceNonlinear correlation in phase space

DISTRIBUTION AT 120TH TURN

INITIAL DISTRIBUTION
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DISTRIBUTION AT 215TH TURN
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Example 
Nonlinear coupling ( m = 1, n = 2 )

Initial emittance ratio : εx(y) / εz = 0.1

z-pxpx-pzx-px



Phase-space evolutionPhase-space evolution
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Coupling sourcesCoupling sources

 Transverse - transverse

 Transverse - longitudinal

COOL’07 (Sep. 2007)

The electromagnetic fields of typical coupling sources can be derived from
vector potentials of the form                         . A = 0, 0, A

z( )

It is straightforward to develop linear and nonlinear couplings between the two 
transverse directions; we can employ various magnets such as a solenoid (linear),
a skew quadrupole (linear), a sextupole (third-order), an octupole (fourth-order), etc.

For instance,                               for a skew quadrupole magnet.Az = gskewxy! p (s)

In order to couple the transverse motion with the longitudinal motion, we employ
radio-frequency devices or momentum dispersion.

Linear coupling rf cavity (rectangular) : 

Nonlinear coupling rf cavity (cylindrical) :

Az ! grf x sin("t)# p (s)

Az ! grf Jm "mn
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( TMmn0-mode operation )



HamiltonianHamiltonian

 Coupling potential

 Hamiltonian in betatron space
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Application to FELApplication to FEL



Necessary conditionsNecessary conditions

 The transverse normalized emittance εn of the electron beam
must be less than λ / 4π.

 The energy spread of the electron beam must be less than the
FEL parameter ρ.

 The current of the electron beam should be high so as to make
the FEL parameter large and the saturation distance short.
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( K is the normalized strength of the undulator. )

These conditions suggest that an optimization of the three projected
emittances may improve the performance of an FEL system.



Emittance Emittance optimizationoptimization
 The recent progress of accelerator
technologies has made it feasible to
produce a high-quality electron beam with
a very low longitudinal emittance.

 The FEL gain is then limited mainly by the
transverse beam quality.

COOL’07 (Sep. 2007)

GENESIS simulation

Reduce εx and εy at the sacrifice of εz !

Example: third-order emittance transfer

2!
x(y) "! z

= integer

1.14Undulator parameter K

2Undulator period λW [cm]

250Peak current [A]

1Beam energy [GeV]

6Radiation wavelength λ [nm]



Beam conditioningBeam conditioning

 The FEL resonance condition for an electron
with a finite transverse amplitude can be
given by

       where Jx(y) are the transverse actions.

 The energy (γ) of each individual electron is
different from the ideal design value (γ0).

 Substituting Δγ = γ − γ0 into the above
equation, we find that the number of
resonant electrons increases considerably
when the beam has the following correlation:

        where κx(y) are the conditioning parameters;
when κx = κy, we have κx = (λw / λ) / 2βx.
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A possible conditioning in a coupling ringA possible conditioning in a coupling ring
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Third-order emittance transfer (m = 2, n = 1)

Initially matched Mismatched



Phase-space evolution Phase-space evolution (mismatched)(mismatched)

COOL’07 (Sep. 2007)

x vs. p
y p

x
vs. p

z
J
x
+ J

y
vs. p

z

z vs. p
z

x vs. p
x

x vs. y



GENESIS resultGENESIS result
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Original beam

Conditioned beamThird-order manipulation
(output from a coupling ring)



SummarySummary

 Non-dissipative manipulation of charged-particle beams
should be useful in practice.

 An efficient emittance transfer is achievable by resonantly
coupling the degrees of freedom.

 A coupling storage ring enables one to optimize the ratios of
three projected emittances for specific purposes.

 Various linear and nonlinear correlations in phase space can
naturally be developed during an emittance transfer process.

     The present method thus offers a possibility of controlling
charged-particle beams in 6D phase space; an optimization
of not only emittance ratios but also detailed structures of
particle distributions in subspaces may be feasible.
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