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LiouvilleLiouville’’s s theoremtheorem

 Suppose a dynamical system of multi-particles interacting each other.
 Define a probability density F in Γ-space (q1, q2, …, qn; p1, p2, …, pn); FdΓ

( dΓ = dq1dq2
…dqndp1dp2

…dpn ) is the probability of finding the system in
the region (qi, qi + dqi) and (pi, pi + dpi) where i = 1, 2,…, n.

 Provided that qi’s and pi’s satisfy the Hamiltonian equations of motion,
it is possible to show

n = 3N for a charged-particle beam consisting of N particles.
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An important statement of the incompressibility
of the flow in phase space !

is an invariant.d!"
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EmittanceEmittance

 Emittance is the most important parameter representing the beam quality.
 In standard accelerator theories, we explore the dynamical behavior of a
beam in 6D phase space spanned by canonical coordinates (x, y, z ; px, py, pz).

 The particle distribution function f in µ-space obeys

Beam emittance  6D phase-space (µ-space) volume
occupied by a beam.

The collision term appears in µ-space;
thus, strictly speaking, the emittance is not
conserved even without dissipation.

is not an invariant !dµ!
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Emittance Emittance preservationpreservation

In many cases of interest to us, the collision term (in other words,
the effects of intra-beam scattering) is negligible because an ordinary
beam is very hot and thin.

Df

Ds
! 0 : Emittance is an approximate invariant in accelerators !

✔ In order to improve the beam quality, we have to introduce dissipative
    interactions (cooling effect) into an accelerator.
✔ Typical electromagnetic elements (magnets, rf cavities, etc.) only provide
    conservative forces that never affect the 6D volume of a beam.
✔ Beam cooling is very difficult in practice.

Only few cooling techniques have been developed so far.
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Why cooling?Why cooling?

 The volume occupied by a beam in phase space is the
measure of beam quality.

 A particle accelerator is, in general, a conservative
dynamical system.

A smaller volume means a higher quality.

The beam volume in 6D phase space is
an approximate invariant.
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We have to introduce a dissipative force into an accelerator,
in order to improve the beam quality for users.



Cooling and dampingCooling and damping
 Transverse projected emittances
conventionally defined in x-x’ and y-y’
phase planes damp when the beam is
accelerated (adiabatic damping).

 In one word, this is because a pair of
variables (x, x’) or (y, y’) are not canonical
conjugate where the prime stands for s-
derivative, i.e. ’ ≡ d/ds.

 Since a beam is accelerated in general by
a conservative force (such as RF electric
fields), the 6D emittance is certainly
unchanged.

Do not confuse adiabatic damping
with cooling !
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Non-dissipative manipulation of Non-dissipative manipulation of µµ-space-space



Concept of Concept of emittance emittance manipulationmanipulation

 We often consider projections of the
      6D emittance onto 2D phase planes.
 Projected emittances of a beam are
      defined in x-px, y-py, and z-pz phase planes.
 In general, projected emittances are
      not invariant; it is easy to change them
      by introducing coupling potentials that
      correlate the degrees of freedom.

Design orbit

Vertical

HorizontalLongitudinal
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“Cooling” is difficult because the 6D volume
of a beam is invariant in Hamiltonian systems.

It is much easier to manipulate 2D subspaces (emittance projections).



Coupling storage ringCoupling storage ring

 2D subspaces are connected through various coupling potentials artificially controllable.
 Not only a full emittance exchange but also a partial emittance transfer are feasible.
 It is possible to develop various correlations between the three degrees of freedom.
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A COMPACT STORAGE RING FOR THE OPTIMIZATION
OF CHARGED-PARTICLE BEAMS IN 6D PHASE SPACE

Beam Source

Optimized Beam

Transport system
(matching to the ring acceptance)

Pre-accelerator 
(optimization of the injection energy)

Coupling Sources

Accelerator
(if necessary, for the next system)



ModelModel

For the sake of simplicity, ignore the following effects:
 Interparticle interactions through the Coulomb fields
 Details of the lattice design (smooth approximation)
 Radiation, wakefields, etc.
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The Hamiltonian of the dynamical system of interest to us can then be written as
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(νx, νy, νz) : tunes
       R       : average radius of the coupling ring
              φc       : artificial coupling potential
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In general, the coupling constants g1 and g2 are 
s-dependent; it is possible to change gradually
or switch on and off individual coupling terms.



Resonant Resonant emittance emittance transfertransfer
 The coupling between the degrees
of freedom can be strengthened by
increasing the coupling constants.

 The enhancement of coupling is,
however, almost useless for the
present purposes.

 In order to achieve an efficient
emittance transfer, the coupling
ring must operate near resonances:
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Off resonant case

On resonant case

COOL’07 (Sep. 2007)

In both cases, R = 1 and g1 = g2 = 0.01.
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InvariantsInvariants

 2D ( g1 or g2 = 0)

 3D (full coupling)
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Different forms of the invariant can be found
for different coupling potentials.
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Third-order emittance transfer ( m = 1, n = 2 )

2D
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Equilibrium Equilibrium emittance emittance ratioratio
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In a 2D case where g2 = 0, we can find another invariant by averaging the single-
particle motion near resonance, i.e.                                        :

H =
!J ± h

mn
J
n /2
(1" J )m /2 cos# for m + n = even,

!J ± h
mn
J
n /2
(1" J )m /2 sin# for m + n = odd,

$
%
&

where hmn is a constant parameter, J = εz / nI2D and ψ is the relative phase variable
conjugate to J.      can be considered as the Hamiltonian of the averaged system.
The equilibrium emittances are then given by
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Emittance Emittance transfer and correlationtransfer and correlation
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✔ Projected emittances are defined as                    and                  .

✔ The emittance (the 4D volume) is invariant and given by                  .          

✔ With a transfer matrix M, the second moments are transformed to MSMT. 
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Example (linear case) The off-diagonal sub-matrices
Sxy and Syx describe correlation.

Even if we start with an ordinary “uncorrelated” beam, the elements of
the off-diagonal matrices become non-zero during an emittance transfer
process where ε4D and εx + εy are both conserved. (At each moment of
a full emittance exchange, the correlation disappears.)
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Linear correlation in phase spaceLinear correlation in phase space

DISTRIBUTION AT 40TH TURN

INITIAL DISTRIBUTION
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DISTRIBUTION AFTER A FULL EMITTANCE EXCHANGE
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Example 
Linear coupling ( m = n = 1 )

Initial emittance ratio : εx(y) / εz = 10

x-pz



Nonlinear correlation in phase spaceNonlinear correlation in phase space

DISTRIBUTION AT 120TH TURN

INITIAL DISTRIBUTION
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DISTRIBUTION AT 215TH TURN
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Example 
Nonlinear coupling ( m = 1, n = 2 )

Initial emittance ratio : εx(y) / εz = 0.1

z-pxpx-pzx-px



Phase-space evolutionPhase-space evolution
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Coupling sourcesCoupling sources

 Transverse - transverse

 Transverse - longitudinal
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The electromagnetic fields of typical coupling sources can be derived from
vector potentials of the form                         . A = 0, 0, A

z( )

It is straightforward to develop linear and nonlinear couplings between the two 
transverse directions; we can employ various magnets such as a solenoid (linear),
a skew quadrupole (linear), a sextupole (third-order), an octupole (fourth-order), etc.

For instance,                               for a skew quadrupole magnet.Az = gskewxy! p (s)

In order to couple the transverse motion with the longitudinal motion, we employ
radio-frequency devices or momentum dispersion.

Linear coupling rf cavity (rectangular) : 

Nonlinear coupling rf cavity (cylindrical) :

Az ! grf x sin("t)# p (s)

Az ! grf Jm "mn
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( TMmn0-mode operation )



HamiltonianHamiltonian

 Coupling potential

 Hamiltonian in betatron space
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Application to FELApplication to FEL



Necessary conditionsNecessary conditions

 The transverse normalized emittance εn of the electron beam
must be less than λ / 4π.

 The energy spread of the electron beam must be less than the
FEL parameter ρ.

 The current of the electron beam should be high so as to make
the FEL parameter large and the saturation distance short.
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( K is the normalized strength of the undulator. )

These conditions suggest that an optimization of the three projected
emittances may improve the performance of an FEL system.



Emittance Emittance optimizationoptimization
 The recent progress of accelerator
technologies has made it feasible to
produce a high-quality electron beam with
a very low longitudinal emittance.

 The FEL gain is then limited mainly by the
transverse beam quality.

COOL’07 (Sep. 2007)

GENESIS simulation

Reduce εx and εy at the sacrifice of εz !

Example: third-order emittance transfer

2!
x(y) "! z

= integer

1.14Undulator parameter K

2Undulator period λW [cm]

250Peak current [A]

1Beam energy [GeV]

6Radiation wavelength λ [nm]



Beam conditioningBeam conditioning

 The FEL resonance condition for an electron
with a finite transverse amplitude can be
given by

       where Jx(y) are the transverse actions.

 The energy (γ) of each individual electron is
different from the ideal design value (γ0).

 Substituting Δγ = γ − γ0 into the above
equation, we find that the number of
resonant electrons increases considerably
when the beam has the following correlation:

        where κx(y) are the conditioning parameters;
when κx = κy, we have κx = (λw / λ) / 2βx.
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A possible conditioning in a coupling ringA possible conditioning in a coupling ring
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Third-order emittance transfer (m = 2, n = 1)

Initially matched Mismatched



Phase-space evolution Phase-space evolution (mismatched)(mismatched)
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GENESIS resultGENESIS result
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Original beam

Conditioned beamThird-order manipulation
(output from a coupling ring)



SummarySummary

 Non-dissipative manipulation of charged-particle beams
should be useful in practice.

 An efficient emittance transfer is achievable by resonantly
coupling the degrees of freedom.

 A coupling storage ring enables one to optimize the ratios of
three projected emittances for specific purposes.

 Various linear and nonlinear correlations in phase space can
naturally be developed during an emittance transfer process.

     The present method thus offers a possibility of controlling
charged-particle beams in 6D phase space; an optimization
of not only emittance ratios but also detailed structures of
particle distributions in subspaces may be feasible.
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