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Outline

Principal idea  
Polarization of electron plasma (beam) by a fast ion
Potentially possible amplification
Region of amplification
Limitation of cooling rate due to ion shielding
Arrangements for microwave instabilities in e-beam
Shottky-noise limitation and suppression of noise
Limitation due to non-linear saturation
Phasing
CEC on FEL  (preliminary estimates)
Conclusions and outlook
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History of idea (1980-91-95-2007)
Coherent electron cooling (CEC) was proposed 27 years ago

What changed in last 10 years?
• Relativistic DC EC realized (FNAL)
• ERL realized (JLab)
• SASE FEL realized (UCLA - DESY)
• ERL-based HEEC on the way (BNL)

And more…

• CEC advantages/disadvantages 
compared to:
EC :    Gain in cooling rate

Complicate BT

SC :    Very large FB (30 GHz – optics)

Precise phasing required

OSC :  Effective in a wide energy range

Small signal delay

Intense e-beam required

Signal gain is limited

• General idea: amplify response of e-
beam to an ion  by a micro-wave 
instability of the beam
• A few instabilities have been shown
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Fast ion wake in electron gas
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In stable plasma, ion receives drag force

Fast ion produces polarization of e-gas:
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•A micro-wave instability is called…
•E-beam should be cool enough…
•Phasing is required…
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Maximum CEC rate

• Maximum field initiated by a single ion 
(after amplification at absence of  friends…)
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Microwave electron instabilities -1
Introduce parametric plasma resonance 0~)(~ 2 =+ ntn eω&&

;               

•Change electron density up and down every 90 degree 

of plasma phase advance

•Start at

•E-beam in modulated solenoid:
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then after each single period:

Correction: magnetized plasma is non-isotropic: θωω cos×⇒ ee

Possible way:
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Microwave electron instabilities-2

• Negative  longitudinal mass instability
An example:
e-beam in solenoid with helical undulator, period
• Beam angle

• The angle grows with energy at
• Translation velocity: 

decreases with energy at
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Coulomb instability:
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Microwave electron instabilities -3

FEL instability
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•Undulator period

•Radiation wave length

•SASE gain length

•Optimal arrangement:

•Plasma beat wave length
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Limitations of CEC due to ion interactions

• Conventional stochastic cooling limit:
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Schottky noise limitation of CEC

• Normal Schottky impact:
cool
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Suppression of Schottky noise

• Frequency range:
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•Adiabatic acceleration (more suppression)

Possible ways:
•3/2 e-gun regime:

•Thermal relaxation along a low energy drift (most effective, in principle)

•Fast acceleration case: implement plasma gymnastics to compensate for 
instability mode (not effective in case of FEL amplification}

ck βω /= ⊥≥ σ/1k

2/12 )/( cathTeU≈Γ

An “absolute” suppression limit: 
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Gain limitation due to non-linear saturation

Maximum gain for an absolute cooled e-beam:
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Transverse vs longitudinal CEC

• Due to beam transport conditions and nature of 
microwave instabilities, transverse e-polarization is low 
compared to the longitudinal one. Therefore, the 
transverse drag force is small compared to the 
longitudinal one

• Solution in general: arrange for dispersive cooling
• Method  : ion dispersion + tilt of electron ellipsoids

R26≠0 Non-achromatic chicane installed at the

exit of the FEL before the kicker section

turns the fronts of the charged planes

•An alternative option: create transverse gradient of electron energy, by

introducing the gradient SRF (no bend 
required…)
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CEC phasing

• The “good mixing” in CEC is extraordinary good 
(super-large frequency bandwidth!)

• The “bad mixing” for non-bent ion beam is not bad…

• However, the e-beam response experiences some 
delay (necessary for amplification)

• The most advantageous way to compensate for delay 
time seems to be:

Increase (or modulate) electron energy
• In case of CEC on FEL, the “light”overtakes the ion…
Optimal phasing needs more study
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FEL and HEEC

Vladimir N. Litvinenko
BNL, Upton, NY, USA

Yaroslav S. Derbenev
TJNAF. Newport News, VA, USA

FELs and high-energy 
electron cooling

29th International FELConference
August 26-31, 2007, BINP, Novosibirsk



Thomas Jefferson National Accelerator Facility Page 16

FELs and HEEC

And so, my fellow Americans, 
ask not what your country 
can do for you; 
ask what you can do 
for your country.

Content

And so, my fellow FELers, ask not
what storage ring can do for FELs:

Ask what FELs can do
for your storage rings!

Vladimilr Litvinenko
29th International FEL Conference
August 26-31, 2007, BINP, Novosibirsk
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CEC on SASE FEL
ultra-relativistic case (γ>>1), 

longitudinal cooling
E>EoEo

E<Eo

Most versatile phasing option
Hadrons

Electrons

Modulator:region 1
about a quarter of 
plasma oscillation

Longitudinal dispersion for 
hadrons Kicker:  region 2

Amplifier of the e-beam 
modulation via SASE FEL

Most economical option
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CEC on FEL  

• Modulator: Interaction region 1

ωpe =
4πnee

2

me
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Length: about a quarter of plasma oscillation

Each hadron generates modulation in the electron 
density with total charge of about minus charge of the hadron, Z
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CEC on FEL

Hadrons

Electrons

Longitudinal dispersion for hadrons, time of flight depends on its energy:  
(T-To) vo= -D (E-Eo)/Eo

Amplifier of the e-beam  modulation- SASE FEL

Electron density modulation is  amplified in SASE FEL and made 
into a train with duration of N alternating hills (high density)
and valleys (low density) with period of FEL wavelength 
λo=λw(1+aw

2)/2γ2 ; Nc ~ Lgain/λw
Maximum gain of the electron density of SASE FEL is ~ 103.
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CEC on FEL

A hadron with central energy (Eo) phased with the hill where 
longitudinal electric field is zero, a hadron with higher energy 
(E>Eo) arrives earlier and is decelerated, while hadron with 
lower energy (E<Eo) arrives later and is accelerated by the 
collective field of electrons 

Kicker: Interaction region 2

E>Eo
Eo

E<Eo
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Machine Species Energy 
GeV/n

Synchrotron 
radiation, hrs

100 20,961 ∞

40,246 ∞

48,489 ∞

13/26

250

450

7,000

Electron 
cooling, hrs CEC, hrs

RHIC Au ~ 1 0.03

RHIC protons > 30 0.8

LHC protons > 1,600 0.95

LHC protons ∞ ∞ < 2

Cooling of hadron beams



Thomas Jefferson National Accelerator Facility Page 22

Conclusions
• Coherent electron cooling seems to be a promising method  to 

enhance the capabilities of electron/stochastic cooling. It might 
find important applications in a wide energy range of hadron
beams in accelerators 

• At high energies, it might take full advantage of high gain FELs
based on high brightness ERLs

• Proof of principle experiment of cooling Au ions in RHIC at ~ 40
GeV/n is feasible with existing R&D ERL (oper. starts in 2009)

• Cooling 100 GeV/n ions and 250 GeV protons in RHIC seems to 
be straight forward

• Cooling protons in LCH at 7 TeV seems to be possible, but may 
require slightly more elaborate scheme (buncher, etc.)

• Question of possible  short-noise suppression in electron beam 
is very interesting and should be further studies  
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Afterwards

It seems we see the prairie, but

was the horse laying there?

A comprehensive study to follow…
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