

#### Progress with Tevatron Electron Lenses

Vsevolod Kamerdzhiev for Fermilab Beam-Beam Compensation team

COOL 07, Bad Kreuznach, September 10-14, 2007

# Bunch structure in the Tevatron



| RF            | 53.1 MHz    |  |
|---------------|-------------|--|
| bunch spacing | 396 ns      |  |
| abort gaps    | 2.6 μs      |  |
| bunch length  | < 3 ns (RMS |  |

36 proton bunches collide with36 antiproton bunches at two IPs

image taken from Tevatron Rookie Book, p. 9.13. http://www-bdnew.fnal.gov/operations/rookie\_books/Tevatron\_v1.pdf

V. Kamerdzhiev for BBC team

Progress with Tevatron Electron Lenses

# Non-luminous losses in the Tevatron

#### Example of a Tevatron store



At present, beam-beam effects are stronger on protons, accounting for 10-15% loss of the integrated luminosity. Proton loss rates vary greatly from bunch to bunch. <u>Conclusion: TELs should compensate protons.</u>

# Proton bunch-by-bunch tunes



V. Kamerdzhiev for BBC team

# Proton bunch-by-bunch tunes



Lower due to missing pbar bunches 375 min in the store # 5592 0.59025 0.59 0.58975 0.5895 tune 0.58925 Lactional t 0.58875 0.5885 0.5885 0.588 0.58775 0.5875 Ó bunch #

V. Kamerdzhiev for BBC team

Progress with Tevatron Electron Lenses

## **Tevatron Electron Lenses**



# TEL e-beam transmission



V. Kamerdzhiev for BBC team



#### Location of TELs



# TEL2 installed in the Tevatron



#### The tune shift formula

 $dQ_{x,y} = +\frac{\beta_{x,y}L_er_p}{2\varkappa ec} \cdot j_e \cdot \left(\frac{1-\beta_e}{\beta_e}\right)$ 

#### **Typical TEL2 parameters**

| Parameter                         | Symbol                              | Value     |
|-----------------------------------|-------------------------------------|-----------|
| Electron beam energy (oper./max)  | U <sub>e</sub> ,                    | 5/10 kV   |
| Peak electron current (oper./max) | Je                                  | 0.6/2.3 A |
| Magnetic field ratio main/gun     | B <sub>main</sub> /B <sub>oun</sub> | 30/3 kG   |
| e-beam radius in main solenoid    | a <sub>e</sub>                      | 2.3 mm    |
| Cathode radius                    | a <sub>c</sub>                      | 7.5 mm    |
| e-pulse width, "0-to-0"           | Те                                  | 600 ns    |
| e-pulse repetition rate           | $f_{O}$                             | 47.7 kHz  |
| Effective interaction length      | L <sub>e</sub>                      | 2.0 m     |
| Vertical β-function               | β <sub>y</sub>                      | 150 m     |

## Three types of e-guns



V. Kamerdzhiev for BBC team

## Electron beam profiles



Since e-beam is strongly magnetized in 4-40 kG magnetic field, the charge density distribution in the interaction region has the same shape as on the cathode



## E-gun performance



V. Kamerdzhiev for BBC team



## E-gun driver



#### **TEL2 block diagram**



V. Kamerdzhiev for BBC team

Progress with Tevatron Electron Lenses



### E-beam quality issues



V. Kamerdzhiev for BBC team

Progress with Tevatron Electron Lenses

# TEL2 timing for proton BBC



V. Kamerdzhiev for BBC team



#### Transverse alignment



## Measured tune shift (TEL2)



# Single bunch BBC (P12)





## LIFETRAC simulation



V. Kamerdzhiev for BBC team

Progress with Tevatron Electron Lenses

# $rac{1}{2}$ improvement vs time in store





## Single bunch BBC



The decrease of bunch intensity as reported by T:SBDPIS for the first 1.5 hours of a store. TEL2 was acting on proton bunch #12,  $J_e^{pk} = 0.3$  A. Scale: 0 – -18e9 protons.

# Increase of Luminosity Lifetime





#### TEL2 in dc mode





## TEL1 on P13





## Summary

- ✓ The e-beam quality in both TELs reached the level that made reproducible demonstration of beam-beam compensation (tune shift) possible.
- ✓ The 2nd Tevatron Electron Lens (vertical) ~doubled proton intensity lifetime of the bunch it was acting on
- ✓ Agreement with simulations
- ✓ The 1st Tevatron Electron Lens (horizontal) improved proton intensity lifetime by 20-60%
- ✓ TELs improve luminosity lifetime as well
- ✓ BBCompensation helps for ~10 hrs in HEP stores
- $\checkmark\,$  possible applications of ELs in RHIC and LHC
- ✓ Will continue experimental and simulation studies and introduce in TEV operation



- Head-on compensation with Gaussian electron beam profiles (dc or pulsed)
- Study the effect of electron beam size on protons (lifetime, halo, Schottky) in both TELs
- Use both TELs simultaneously for BBCompensation in dc and pulsed mode
- Upgrade HV pulse generators → multi-bunch BBCompensation



#### **Backup slides**



#### Test bench



V. Kamerdzhiev for BBC team

Progress with Tevatron Electron Lenses

# E-beam profiles for BBCompensation

Considerations on compensation of beam-beam effects in the Tevatron with electron beams,

V. Shiltsev, V. Danilov, D. Finley, and A. Sery PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME **2**, 071001 (1999)



V. Kamerdzhiev for BBC team

# BBCompensation scenarios



# P losses vs e-beam displacement

