COOL07, Bad Kreuznach, 13th September 2007

LEIR Commissioning and Performance

Christian Carli on behalf of the I-LHC and LEIR teams

Acknowledgements:

LEIR is the result of the work of many people from several departments at CERN and outside CERN,

Special thanks to M.Chanel for help and advice

Content

- Introduction
- Overview of the LHC Ion Injector Chain
- LEIR Overview
- LEIR Commissioning and first Runs
- LEIR Performance
 - ☐ "Early" LHC Ion Beam
 - □ Nominal LEIR Operation
 - ☐ Comparison with design values
 - Dynamic Vacuum and Beam Life-Time
- Summary

Introduction

- LHC (Large Hadron Collider) main diet : protons.
- In addition, ion operation during several weeks per year :
 - □ ALICE experiment optimized to observe ion collisions
 - ☐ CMS and ALTLAS intend to take *cleaning* data with ions as well
 - \square Initially Pb \leftrightarrow Pb operation
 - □ Later (likely, but not in baseline) :
 - $p \leftrightarrow Pb$
 - Lighter ions (e.g. In, Kr, Ar, O).

Introduction

- No way to satisfy LHC needs with the pre-LHC-era ion chain.
- Accumulation with electron cooling in LEIR to produce the bright beams needed (chosen amongst several proposals after tests in the 90ies).
- Nominal Lumi achievable in LHC? (LHC limitations: collimation, bound free pair production), demanding for whole chain!
- > Early LHC Ion Operation Scheme:
 - \square Lower Luminosity $5x10^{25}$ cm⁻²s⁻¹ (instead of 10^{27} cm⁻²s⁻¹) useful for first physics
 - □ Nominal bunch population (instrumentation),
 - Simplified injector chain and faster LHC filling,
 - □ Gain experience on LHC ion operation without danger to damage the machine.

Overview of the ion chain for LHC

LHC (two ring collider):

- Filling with 12 SPS batches and 592 bunches during ~10min/ring
- Limitations: Collimation, Ions capturing the electron from an electron positron pair

SPS:

- Accumulation of up to 13 PS/LEIR cycles
- Limited by space charge tune shift, IBS ?

Transfer PS to SPS:

Stripping Pb⁵⁴⁺ to Pb⁸²⁺ in low β insertion

LHC 7 TeV p-p 2.76 TeV/n Pb

177 GeV/n Pb

PS.

- Provides bunch structure (spacing) for nominal beam
- Complicated RF gymnastics (with new low level RF) for nominal beam)

Ion Linac 3:

- New ECR source (200µA of Pb²⁷⁺) in collaboration with CEA Grenoble)
- 5 Hz repetition rate
- Stripping Pb²⁷⁺ to Pb⁵⁴⁺
- Energy ramping for LEIR injection

6 GeV/n Pb

72 MeV/n Ph

4.2 MeV/n

"Low Energy Ion Ring" LEIR:

- "New" accumulator (using existing LEAR hardware) added to ion chain
- Transforms several long Linac3 pulses into short dense bunches
- Multiturn injection with stacking in momentum and both transverse phase spaces
- New state-of the-art electron cooler constructed by a BINP team

Overview of the ion chain for LHC

	Linac 3	LEIR3 PS		SPS		LHC			
Parameter		nominal	early	nominal	early	nominal	early	nominal	early
energy per nucleon	4.2 MeV	4.2 N	4.2 MeV 5.9 GeV		72 N	72 MeV		2.76 TeV	
Charge state	27→54	27 —	$27 \rightarrow 54 \qquad \qquad 54 \rightarrow 82$		82		82		
Shots accumulated		~5-7	1	1	1	8,12,13	4	12	16
LHC bunches/shot (filling)	≤ 1	4	1	4	1	≤ 52	4	592	62
Ions/LHC bunch		2.25	25 10 ⁸ 1.2 10 ⁸		0.9 108		0.7 108		
Ions/shot (filling)	11.5 108	9 10 ⁸	2.25 108	4.8 10 ⁸	1.2 108	\leq 47 10 ⁸	3.6 10 ⁸	415 10 ⁸	43 108
Bunch spacing		350 ns		99.8 ns	1350ns	99.8 ns	1350ns	99.8 ns	1350 ns
Norm. rms emittance	0.25 μm	0.7	0.7 μm 1.0 μm		1.2 μm		1.5 μm		
Long. emitt./LHC bunch (4 $\pi \sigma_E \sigma_\tau$)		0.025	eVs/n	0.05 eVs/n		0.24 eVs/n		1 eVs/n	
rms bunch length		50	ns	1 r	ns	0.41 ns		0.25 ns	
Cycle/Filling time	>200ms	3.6s	2.4s	3.6s	2.4s	~50 s	~15 s	~10 min	~4 min
β*								0.5 m	1.0 m
Initial luminosity (10 ²⁷ cm ⁻² s ⁻¹)								1	0.05
Initial lumi. decay time (2 experiments)								~5.5 hrs	~ 10 hrs

LEIR Overview

Accumulation alternates:

- Elaborate multiturn injection :
 - □ Stacking in three phase planes,
 - □ Needs momentum ramping and dispersion at injection,
 - \Box 70 turns (200 µs) with >50% efficiency every 200 to 400 ms.
- Fast electron cooling:
 - □ New cooler constructed (BINP)

LEIR Overview

- Basic shape: square
 - □ with long bending section in corners
 - ☐ four long straights
- Requirements (rather different for injection and cooling):
 - ☐ Injection and cooling in adjacent straights
 - Injection: large (normalized) dispersion,
 - Cooler: small dispersion (large momentum spread injected) and $\beta \sim 5$ m
 - □ Neglecting cooler periodicity two and symmetry
 - ☐ Sufficient acceptances and suitable working point
 - □ Cooler introduces coupling:
 - Compensated with short solenoids (plus skew quads)
 - Additional focusing compensated globally (readjustment of all quad families and trim power converter close to cooler)
 - No periodicity any more, but still one symmetry plane.

LEIR Overview

■ Lattice functions for one half of LEIR and working point (black: nominal working point, grey: alternative working points)

LEIR - Acceleration and Eddy Currents

- Acceleration (transverse optics perturbations):
 - ☐ C-shaped magnet & vacuum chamber not isolated w.r.t. ground,
 - □ Net current along the chamber,
 - ☐ Gradient "seen" by beam,
- Correction needed:
 - □ Readjustment of quad currents (5 families),

Measured Quadrupole currents along the machine cycle with compensation of gradients in bends during ramp

LEIR Commissioning and first runs (brief Summary)

CERN

- Injection Line in Spring 2005
 - ☐ In parallel to Ring Installation
 - Some difficulties with Matching and Controls
- Ring commissioning start in autumn
 - \square Start with O⁴⁺ (expected longer life-time ??)
 - ☐ Controls (new developments for LHC applied/tested with LEIR)
 - ☐ Circulating beam and good injections efficiency rather quickly
 - ☐ Progress slowed down due to short life-time: Ions hit a Beam Ionisation Profile Monitor
 - ☐ Weak signs of cooling only
 - ☐ Pick-up Cable problem:
 - Ramp induced currents damage pick-up cables
 - Ramp temporarily reduced

LEIR Commissioning and first runs (brief Summary)

- Shutdown in January & February 2006:
 - ☐ Replacement/improvement of Ionisation Profile Monitor (absorbers)
 - ☐ Definite fix of Pick-up cable problem
- Completion of LEIR commissioning with Pb⁵⁴⁺
 - □ Some work on injection matching needed again
 - ☐ Hardware fixes during "shutdown" very beneficial
 - Cooling and accumulation observed quickly (better life-time)
 - Acceleration and ejection and transfer to the PS injection
- LEIR commissioning completed on 12th May 2006 (early beam demonstrated two injections and faster acceleration)
- First LEIR run in autumn 2006 to provide "early" to the PS
 - ☐ Fast start with beam (after delay due to cooler collector vacuum leak)
 - ☐ Fluctuations of injection line and efficiency due to PS stray field
- Second LEIR run started in August 2007 (provide beam to the SPS)
 - ☐ Again smooth start-up and operation

LEIR Performance – "early" beam

- Properties of the "Early beam" in LEIR measured this year:
 - □ One Linac3 shot just sufficient: 2.25⁸ 10 Pb⁵⁴⁺ (1.2 10¹⁰ charges) required
 - □ Longitudinal emittance: measurements gives rms emittance for entire nucleus
 - (4/208n)*1.3 eVs = 0.025 eV/n (as specified)

LEIR Performance – "early" beam

☐ Transverse emittances:

- application gives one rms physical emittances
- Horizontal: $\varepsilon^*_{rms} = 0.5 \, \mu m$ (larger than in 2006, but o.k.)
- Vertical: $\epsilon^*_{rms} = 0.2 \, \mu m$

LEIR Performance – nominal beam

■ Evolution of longitudinal Schottky spectra during accumulation (measured with a commercial FFT spectrum analyser)

LEIR Performance – nominal beam

- Properties of the "nominal beam" in LEIR measured this year:
 - ☐ Accumulation of up to 5 shots => intensity needed after accumulation
 - □ Loss at beginning of ramp (more pronounced for higher intensities) => only ~2/3 of design intensity at ejection
 - ☐ Emittances well within specifications

LEIR Performance - Comparison with Design

	Nominal		"early"	
Parameter	design	obtained	design	obtained
Linac3 current (µA)	50	25	50	25
Cycle time (s)	3.6	3.6	2.4	2.4
Inj. efficiency (%)	50	50	50	50
Accumulated. Int. (10 ⁸ Pb ⁵⁴⁺)		~10		~2.5
Int. for PS (10 ⁸ Pb ⁵⁴⁺)	9	~7	2.25	2.25
Hor. norm. rms emitt. (μm)	0.7	0.5	0.7	0.52
Vert. norm. rms emit. (µm)	0.7	0.2	0.7	0.24
Long. emitt. $4\pi \sigma_E \sigma_{\tau}$ per bunch (eVs/n)	0.05	0.04	0.025	0.025

- Early beam: design performance achieved (smaller emittances)
- Nominal beam: design intensity at ejection not (yet) obtained (small emittances)

LEIR Performance – Dynamic Vacuum and Beam Life-Time

Avalanche-like pressure rise:

- ions lost due to rest gas electron capture (or loss)
 (Pb⁵⁴⁺-> Pb⁵³⁺),
- every lost ion desorbs many restages molecules.

LEIR upgrades based on measurements at Linac 3 (AT/VAC & Linac 3 team)

Limitation of tests in '97 successfully cured!

Loss pattern of Pb⁵³⁺ ions around the LEIR ring with collimators and homogeneous gas density

LEIR Performance – Dynamic Vacuum and Beam Life-Time

- Beam intensity (yellow trace) versus time after long accumulation
- About 16 10⁸ Pb⁵⁴⁺ ions accumulated (saturation) not the record
- Beam life-time ~14 s (with cooling !!)
- Dynamic beam life-time not a limitation at present (for "normal" cycles)
- Small influence of position of movable collimators

Summary and Outlook

- LEIR successfully installed and commissioned:
 - ☐ Commissioning completed in May 2006 with the demonstration of the "early" LHC ion beam
- LEIR becoming an operational machine:
 - □ "Early" beam delivered in routine operation for PS and SPS
 - ☐ Transfer of LEIR operation to the new Common Control Center
 - □ Work in parallel on nominal beam (not considered a priority), to sort out technical problems and, to better understand the machine
- Outlook:
 - □ First LHC Pb ion run probably in 2009?
 - □ Studies on SPS ion fixed target experiments with lighter ions just started
 - □ LEIR run next year? (may be with lighter ions in view of SPS fixed target)

LEIR Injection

Principle:

- bumper moves orbit inwards,
- energy ramping moves orbit outwards,
- constant betatron amplitude for incoming beam.

Result:

- long pulses pulses and good efficiency,
- Large momentum spread, relatively small emittances,
- Good for fast accumulation with electron cooling.

End of injection (70 turns)

After collapse of the bump