Stochastic Cooling for FAIR

F. Nolden, A. Dolinskii, C. Peschke

Location in Fair Layout

CR Collector Ring

Power amplifier

- 1-2 GHz power amplifier prototype ordered
- Power 2 times 100 W
- First on-site tests performed
- Delivery due this month

Purpose of RESR

- Accumulation of antiprotons
 - for HESR (PANDA)
 - and low energy antiproton experiments (FLAIR)
- Deceleration of RIBs (NESR internal experiments)
- Deceleration of antiprotons towards ER (only for AIC)
- Electron cooling of antiprotons (only for AIC)

AIC: antiproton-ion colliderNolden, Cool07, September 10, 2007

RESR Parameters for Antiprotons

Kinetic energy [MeV/u]	3000
Ring circumference [m]	239.91
Transition gamma	5.331
Revolution frequency [MHz]	1.21
Number of injected ions from CR	1 * 10 ⁸ Kinetic energy
Number of accumulated ions	< 2 * 10 ¹¹
Injection cycle time [s]	10

New RESR Lattice

New RESR Lattice

- Excellent conditions for stochastic accumulation
- Flexible optics $(\gamma_t \text{ above transition } \gamma = 4.2)$
- Easier injection/extraction
- Reduced No. of quadrupoles
- Fits into CR hall

RESR and CR Rings

Antiproton Accumulation (1)

Antiproton Accumulation (2)

(after D. McGinnis, FNAL)

Core-Tail Geometry

- Exponential gain profile stack tail to stack core
- Exponential decrement given by intensity ratio
- Can be realized by suitable pick-up
- Yields distance tail-core

$$g = g_t \exp\left(-\frac{x - x_t}{\delta x}\right)$$

$$\frac{\Psi_c}{\Psi_t} = \frac{g_t}{g_c}$$

$$S(x) \propto \exp\left(-\frac{\pi (x-x_t)}{h}\right)$$

$$\frac{x_c - x_t}{h} = \frac{\ln(2000)}{\pi} \approx 2.42$$

Simple Electrode Model(1)

$$S(x) = \frac{2}{\pi} \arctan\left[\frac{\sinh\left(\frac{\pi w}{2h}\right)}{\cosh\left(\frac{\pi x}{h}\right)}\right] \propto \exp\left(-\frac{\pi |x|}{h}\right) \quad \text{for } |x/>>h$$

(valid on the central line if $v \approx c$)

Simple Electrode Model: Linear Scale

Simple Electrode Model: Log Scale

F.Nolden, Cool07, September 10, 2007

RESR Stochastic Cooling

RESR Twiss Functions

Analytic Approximation: Optimum Frequency Slip for Stochastic Cooling (1)

Cooling Rate:

$$\frac{1}{\tau} = \frac{2W}{N} \left(2Bg - g^2 \left(M + U \right) \right)$$

Optimum Gain:

$$g_{opt} = \frac{B}{M + U}$$

Optimum Rate:

$$\frac{1}{\tau_{opt}} = \frac{2W}{N} \frac{B^2}{M + U}$$

Undesired mixing:

$$B = \cos\left(\pi x m_c \eta_{pk} \left(\frac{\delta p}{p}\right)_{tot}\right)$$

Desired mixing:

$$M = \left[m_c \eta \frac{\delta p}{p}\right]^{-1}$$

GSİ

Analytic Approximation: Optimum Frequency Slip for Stochastic Cooling (2)

Assumptions:

- Schottky signal dominates electronic noise
- η_{pk}/η remains constant if γ_t is varied

$$\left(\frac{1}{\tau}\right)_{opt} \propto \eta \cos^2(b\eta), \ b = \pi x m_c \left(\frac{\delta p}{p}\right)_{tot}$$

Tends to zero if U gets much larger than M

– Gets larger in the process of cooling

Gets very small for large bandwidth

Thank you

