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Abstract

Lattice for a 3-GeV cooler ring with split functions is
presented. The ring consists of two half-rings of different
properties: in one half-ring, the phase-slip factor is near-
zero; in the other half-ring, the phase-slip factor is large.
The near-zero phase slip minimizes the “bad mixing” be-
tween the stochastic-cooling pick-ups and kickers, while
the high phase slip maximizes the “good mixing” between
the kickers and the next-turn pick-ups.

INTRODUCTION

In Ref. [1] we reported the lattice design for rapid-
cycling synchrotrons used to accelerate high-intensity pro-
ton beams to energy of tens of GeV for secondary beam
production. After primary beam collision with a target, the
secondary beam can be collected, cooled, accelerated or
decelerated by ancillary synchrotrons (or cooler rings) for
various applications [2, 3, 4].

To increase the efficiency of stochastic cooling in the
cooler ring, the phase-slip factor between the cooling pick-
ups and kickers shall be small to minimize the “bad mix-
ing”, and the phase-slip factor between the kickers and the
next-turn pick-ups should be large to enhance the “good
mixing” [5, 6]. In this paper, we present the preliminary
lattice design for a 3-GeV cooler ring with split functions.
The ring consists of two half-rings of different properties:
in one half-ring, the phase-slip factor is near-zero; in the
other half-ring, the phase-slip factor is large.

LATTICE LAYOUT AND FUNCTIONS

Two different lattice structures are adopted for each half
of the split-function ring. We choose a normal FODO
structure to achieve near-zero phase-slip factor in one half-
ring, and choose Flexible Momentum Compaction (FMC)
lattice to achieve large phase-slip factor in the other half-
ring [7, 8, 9, 10]. The magnet layout of the ring is shown
in Figure 1.

FMC Module Structure for Large Phase Slip

We use the FMC lattice to realize a small momentum
compaction factor αp, so that the absolute value |η| of the
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Figure 1: Main magnet layout of the cooler ring.

phase-slip factor

η = αp − 1
γ2

(1)

is large. Here, γ is the Lorentz factor. For protons or anti-
protons of 3-GeV kinetic energy, γ = 4.2.

A FMC lattice without negative bending requires nega-
tive dispersion at locations of bending dipoles. Figure 2
shows the lattice module consisting of three FODO cells
with missing dipole in the middle cell. The horizontal
phase-advance of about 90◦ per cell excites dispersion os-
cillation so that high dispersion occurs at locations of miss-
ing dipoles.

Figure 2: FMC module with missing dipoles.

The half-ring of large phase-slip factor is designed by
using the modules shown in Figure 2. The lattice consists
of four modules, as shown in the right-hand-side of Fig-
ure 1. The horizontal phase advance is near but not equal to
270◦ across each three-cell module. The horizontal phase
advance across the four-module arc is exactly 6π, so that
the dispersion is completely suppressed outside of the arc.
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The momentum compaction factor can be easily adjusted
by varying the strength of the quadrupole families in the
arc. The momentum compaction across this 180◦ bend is
0.001. The phase-slip factor of the lattice is −0.055. The
lattice function is shown in the Figure 3.

Figure 3: Lattice functions of the large phase-slip half-ring
with FMC modules (blue in top chart: βH ; red in top chart:
βV ; bottom chart: Dp).

Normal FODO Structure for Small Phase Slip

As shown in the Figure 1, the left-hand-side of the
cooler ring contains two bending arcs, each containing
four FODO cells. The horizontal phase advance is ex-
actly 2π across each of these normal arcs. Two arcs are
connected by a dispersion-free straight section with triplet-
quadrupole focusing structure. By tuning the strength of
the quadrupole families and the distance between the mag-
nets, the momentum compaction across this 180◦ bend is
adjusted to 0.0562 so that the phase-slip factor of the lat-
tice is small (η = 0.0005). The lattice function is shown in
Figure 4.

Figure 4: Lattice functions of part of the small phase-slip
half-ring with FODO and triplet structure (blue in top chart:
βH ; red in top chart: βV ; bottom chart: Dp).

Main Parameters

Corresponding to the kinetic energy of the 3 GeV beam
and the circumference of the main accelerator, the circum-
ference of the cooler ring is selected to be 299.7 m [1]. The
maximum β-function is less than 23 m. The maximum dis-
persion is about 5 m. The lattice super-periodicity is 1. The
focusing structures in the straight sections are FODO and
triplet, providing drift spaces with uninterrupted length up
to about 4 m to accommodate stochastic-cooling pickups
and kickers, electron cooling, injection, extraction, and RF
systems. Figure 5 shows the lattice function of entire ring.
Table 1 gives the primary parameters.

Figure 5: Lattice function of the entire cooler ring (blue in
top chart: βH ; red in top chart: βV ; bottom chart: Dp).

Table 1: Primary parameters of the cooler ring.

Ion type proton/anti-proton
Beam kinetic energy [GeV] 3
Ring circumference [m] 299.7
Lattice type - small phase-slip half FODO/triplet
Lattice type - large phase-slip half FMC
Uninterrupted drift length in straight [m] < 4.2
Nominal betatron tune (H) 7.30
Nominal betatron tune (V) 7.34
Transition energy, γT 31.6
Natural chromaticity (H) −8.7
Natural chromaticity (V) −9.5
Maximum dispersion [m] 4.94
Momentum compaction factor 0.022

SUMMARY

Based on the Flexible Momentum Compaction lattice
modules and FODO/triplet structures, we designed a split-
function lattice for 3-GeV proton or anti-proton beams. As
an example to facilitate stochastic cooling with high effi-
ciency, we set the phase-slip factor between the cooling

TUA2C06 Proceedings of COOL 2007, Bad Kreuznach, Germany

100



pick-ups and kickers to near-zero (0.0005) to minimize the
“bad mixing”, and set the phase-slip factor between the
kickers and the next-turn pick-ups to −0.055 to enhance
the “good mixing”.

In the case that the pick-ups or kickers need to be placed
in high-dispersion locations, drifted spaces of dispersion
near 5 m are available. The strengths of the quadrupole
families may be adjusted to again realize the split-function
features.

The lattice study presented is preliminary. Detailed work
including dynamic-aperture evaluation is yet to be per-
formed.
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