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Abstract 

The beam emittance, i.e. the volume of a charged-
particle ensemble in six dimensional phase space, is 
approximately conserved in common accelerators. The 
concept of “cooling” is thus crucial in improving the 
beam quality for various machine users. In contrast to 
cooling, it is rather easy to change the ratios of emittance 
projections on to the three spatial degrees of freedom. 
This paper addresses a possible method of controlling the 
projected emittances with conservative interactions; not 
only a full emittance exchange but also a partial emittance 
transfer can readily be achieved in a dedicated storage 
ring operating near resonance.  In a process of eimttance 
transfer, strong correlations between three directions are 
naturally developed, which may be useful for specific 
purposes. 

INTRODUCTION 
Liouville’s theorem implies that the six-dimensional 

(6D) phase-space volume occupied by a charged-particle 
beam is an approximate invariant unless the beam is 
subjected to dissipative interactions (such as in cooling). 
Symplectic conditions, in a Hamiltonian system (once 
again, no dissipation), put constraints upon emittance 
transfer between the various degrees of freedom [1]. We 
can, however, even in non-dissipative Hamiltonian 
systems arrange for partial emittance transfers. This 
process results in phase space correlations and change in 
the emittance projections on to various phase planes; 
namely, the projected emittances in three degrees of 
freedom are controllable while the direction and amount 
of a possible emittance flow are not very flexible because 
of the symplectic nature of Hamiltonian systems. In some 
applications, it is clearly advantageous to optimize the 
ratios of projected emittances despite the effect of 
correlations. Since the three emittances are not always 
equally important, we may consider reducing the 
emittance of one direction at the sacrifice of the other 
emittance(s).  Emittance exchanging systems have been 
seriously discussed these days to improve the 
performance of free electron lasers (FELs) [2,3]. 

As a possible scheme to achieve efficient emittance 
control, we study a compact storage ring operating near 
resonance. The basic features of linear and nonlinear 
emittance flow are briefly described with numerical 
examples. A general discussion touching on some of these 
matters was made over ten years ago and recently 
published in Ref. [4]. 

COUPLING STORAGE RING 
For a full emittance exchange between the longitudinal 

and transverse directions, Cornacchia and Emma designed 
a beam transport channel that employs a special radio-
frequency (rf) cavity placed in the middle of a magnetic 
chicane [5]. Their rectangular rf cavity, excited in a 
deflective mode, is identical to the coupling cavity 
previously considered for three-dimensional (3D) laser 
cooling [6]. Although the present scheme is based on a 
compact ring rather than a short beam transport, we have 
much higher flexibility in manipulating phase spaces. It is 
actually straightforward to accomplish a wide range of 
emittance ratios simply by switching coupling potentials 
on and off. Furthermore, various linear and nonlinear 
correlations can be introduced in phase spaces if we 
switch off coupling (or extract the beam) on the way to a 
full emittance exchange. 

Neglecting interparticle Coulomb interactions, the 
dynamic motion of a particle in a storage ring can be 
approximated as the superposition of three harmonic 
oscillators. The Hamiltonian of interest to us is given by 
 

H =
1

2
pq
2
+

q

R

2

q2

q=x,y,z

+ c (x, y, z; s),        (1) 

 
where x, y, and z stand, respectively, for the horizontal, 
vertical, and longitudinal directions, q (q = x, y, z)  is the 

tune of each direction, R is the average radius of the ring, 
and the independent variable s is the path length measured 
along the design beam orbit. Here, c (x, y, z; s)  is an 

artificial potential that couples three degrees of freedom if 
required. As an example, let us take a symmetric coupling 
 

c / R = gxx
mzn p (s sx ) + gyy

mzn p (s sy ),       (2) 

 
where m and n are positive integers, and gx(y)  are 

coupling constants. Since coupling sources are generally 
electromagnetic devices localized and fixed at specific 
positions of the ring, we have multiplied each coupling 
term by a periodic delta function p (s)  with periodicity 

2 R . For the sake of simplicity, we assume that the two 
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coupling sources are sitting side by side; namely, sx sy . 

Without loss of generality, we set the origin of the s-
coordinate at the position of the coupling potential. 

The coupling itself can be strengthened by increasing 
gx(y) , but that is not practical, nor necessary.  We can 

prove that, in order to expedite an emittance flow from 
one direction to another, the two directions have to be on 
coupling resonance. Typically, we employ difference 
resonance: 
 

 
m x n z x ,                            (3a) 

 
m y n z y ,                            (3b) 

 
where 

 
x(y)  are integers. The efficiency of the emittance 

transfer can be controlled by changing the distance from 
the resonance or the coupling constant. Although most 
accelerator designers try to avoid such resonances, we 
rather exploit them here. It is straightforward to derive the 
following invariant under the conditions (3): 
 

I x + y

m
+

z

n
= const.,                      (4) 

 
where q (q = x, y, z)  is the projected emittance in q-

direction. Due to the existence of this invariant, the sum 
of all three projected emittances is always bounded. 
Figure 1 shows an example of typical emittance flow 
when a linear coupling potential ( m = n = 1) is taken into 
account. Clearly, the sum of the three projected 
emittances is conserved; namely, x + y + z = const.  

Needless to say, we can stop the emittance flow at any 
timing by shutting down the coupling sources, which 
allows us to choose various ratios of projected emittances.  
 

 
Figure 1: Time evolution of root-mean-squared (rms) 
projected emittances in the x, y, and z directions. A linear 
coupling ( m = n = 1) with gx = gy = 0.01  and R = 1  has 

been assumed in this example. The tunes are 
( x , y , z ) = (1.1, 1.1, 0.1)  satisfying the resonance 

conditions in Eqs. (3). The initial distributions of particles 
are Gaussian and upright in all phase planes. At injection, 
the emittance ratio is x(y) / z = 10 . 

There is a particularly simple scaling law in the case of 
symmetric coupling where gx = gy ( g)  and x = y  

( ) .  When the ring is exactly on resonance, the 

emittance-evolution pattern itself is basically independent 
of the fundamental parameters (g, , and R) and only 

the exchange period varies. We can, therefore, carry out a 
desired beam optimization sooner or later even if it is 
difficult to increase the coupling strength in practice. An 
identical emittance-transfer process can be expected 
under the condition g(mR / )m/2 (nR / z )

n/2
= const.   

PHASE-SPACE CORRELATIONS 

Linear orrelation 
In a linear situation as shown in Fig. 1, the direction of 

a possible emittance flow is strictly limited due to 
symplecticity [1]; provided the beam is initially matched 
to the uncoupled system where c = 0 , the projected 

emittances only start to flow from a “hot” to a “cold” 
degree of freedom. We, however, notice that the 
emittance flow is eventually reversed after the three 
emittances become equal. This suggests the development 
of correlation among the degrees of freedom during the 
emittance exchanging process, which is confirmed in Fig. 
2. The correlation disappears when a full emittance 
transfer is accomplished. 

The projected emittance of a particular direction can be 
diminished if we could somehow produce a beam with 
such a correlation. It is, however, impossible to introduce 
the necessary correlation into phase space (with 
conservative forces) while preserving the three projected 
emittances; the sum of the three projected emittances 
inevitably grows. As a result, the minimum emittance of 
any direction will be larger than the level achievable with 
the original uncorrelated distribution. 

 

 
Figure 2: Phase-space correlation developed in the 
coupled harmonic-oscillator system under a linear 
difference resonance. The particle distributions at 
injection (left) and at the 40th turn (right) in Fig. 1 are 
plotted on a correlation phase plane spanned by x and pz. 

Nonlinear orrelation 
When the coupling source is nonlinear, the direction of 

emittance flow can be made more flexible. The quality of 
a beam is, in a practical sense, somewhat deteriorated by 
“smearing” in phase space. (The 6D volume of the beam 
is, of course, unchanged as long as the nonlinear force is 

C

C

Proceedings of COOL 2007, Bad Kreuznach, Germany TUA1I02

83



conservative.) The coupling constant has to be moderate 
to avoid too much a shrinkage of the dynamic aperture. 
The direction and amount of a nonlinear emittance flow 
depend basically on initial beam conditions (the three 
projected emittances) as well as lattice parameters (tunes 
and coupling constants). Unlike linear coupling cases 
where particle distributions in 2D phase space are always 
elliptic as shown in Fig. 2, complex correlations can be 
developed with nonlinear potentials because of the 
amplitude dependence of single-particle tunes. An 
example of nonlinear correlation is given in Fig. 3 where 
third-order coupling ( m = 1 , n = 2 ) has been assumed. 
To be on resonance, the tunes have been set at 
( x , y , z ) = (1.2, 1.2, 0.1) . These distributions in px-pz 

and z-px phase planes correspond to what we observe at 
the 120th turn after injection. The correlation tends to be 
less pronounced due to nonlinear smearing as the beam 
stays in the coupling ring for a longer period. 
 

 
Figure 3: Phase-space correlation developed in the 
coupled harmonic-oscillator system under a nonlinear 
(third-order) difference resonance. The coupling constants 
and average ring radius have been chosen to be 
gx = gy = 1  and R = 1 . The initial emittance ratio 

assumed here is x(y) / z = 0.1 . 

COUPLING SOURCES 

Transverse-transverse oupling 
In order to introduce linear or nonlinear coupling 

between the two transverse directions, we can simply 
employ multipole magnets. For linear coupling, a skew 
quadrupole magnet can be used. (A solenoid is another 
good candidate as a linear coupling source.) Multipole 
magnetic fields are derivable from vector potentials that 
generally have only longitudinal components. For 
instance, the potential of a skew quadrupole is given by 
 

Askew = 0, 0, gskewxy p (s)( ),                 (5) 

 
where gskew  is proportional to the strength of the magnetic 

field. For nonlinear coupling, we excite a sextupole (third 
order) or an octupole (fourth order) magnet. 

Transverse-longitudinal oupling 
Special rf cavities can be utilized to correlate the 

longitudinal motion with the transverse. The coupling 

cavity mentioned above is a simple solution for 
generating linear synchro-betatron coupling [6]. Even a 
regular accelerating cavity can be a linear coupling source 
when it is placed at a position with finite momentum 
dispersion [7]. The rectangular coupling cavity operating 
in TM210  mode produces a longitudinal electric field 

proportional to x, which establishes a linear correlation 
between the horizontal and longitudinal directions. To 
make a direct coupling with the vertical direction, we just 
rotate the cavity by 90 degrees around its axis of 
symmetry. 

As to nonlinear coupling, we may exploit a cylindrical 
cavity rather than a rectangular type. The electromagnetic 
fields of a cylindrical resonator excited in 

 
TMk 0  mode 

can again be obtained from a vector potential with no 
transverse components: 
 

 

Arf = 0, 0,
V
Jk ( k r / r0 ) cos(m )sin( t) p (s) ,  (6) 

 
where  and V are the angular frequency and amplitude 
of rf, r0  is the radius of the resonator cross section, Jk (r)  

denotes the Bessel function of kth order, and 
 k  is the 

 th root of the algebraic equation Jk (r) = 0 . We see that 

a third-order coupling can be developed in TM010 -mode 

operation. In fact, when 
 
r / r0 1 , the longitudinal 

component of Eq. (6) can be approximated by 
 

Az
V
1 01

2

r

r0

2

sin( t) p (s),              (7) 

 
indicating that Az  depends quadratically on the transverse 

coordinates. Since time t is regarded as the longitudinal 
canonical coordinate in the present coordinate system 
where the path length s is the independent variable, the 
potential (7) yields a third-order synchro-betatron 
coupling corresponding to (m, n) = (2, 1)  in Eq. (2). It is 

indeed possible to provide different types of nonlinear 
coupling by using other excitation modes. 

APPLICATION 
Whenever the emittance of a particular direction is 

more important than those of the other directions or 
emittances ratios rather than their magnitudes themselves 
play an essential role, the present idea merits attention. 
Among a wide range of choices, we here briefly study 
FELs as a possible application of the coupling ring. After 
a proper emittance-transfer procedure, the electron beam 
from the ring is injected into a short transport channel to 
match the Twiss parameters to a subsequent FEL system. 
In what follows, we employ the simulation code 
“GENESIS” [8] to figure out the usefulness of a coupling 
storage ring. The FEL parameters assumed here are 
summarized in Table 1. 
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Table 1: FEL design parameters 

Radiation wavelength  [nm] 6 
Beam energy [GeV] 1 

Beam current (peak) [A] 250 

Undulator period w [cm] 2 

Undulator parameter K 1.14 

 

Emittance ptimization for FEL 
In order to attain high power from FEL, the current of 

the electron beam should be as high as possible. In 
addition, the following conditions are generally required 
for the beam quality [9]: 

(a) The transverse normalized emittances must be less 
than / 4  where  is the wavelength of radiation. 

(b) The energy spread must be less than the FEL 
parameter . 

These requirements indicate that a possible performance 
of FEL is critically limited by the condition of an incident 
electron beam; even if the 6D volume is maintained, the 
FEL gain can be reduced considerably unless the ratios of 
three projected emittances are properly chosen. 
 

 
Figure 4: Nonlinear emittance transfer in a coupling 
storage ring where ( x , y , z ) = (3.55, 3.55,  0.1) . 

 
The recent progress in accelerator technologies has 

made it feasible to produce an electron beam with a very 
low longitudinal emittance [2,3]. The FEL performance is 
then limited by the transverse beam properties rather than 
the longitudinal. If the energy spread is much smaller than 

, the system can tolerate some longitudinal emittance 
growth with no reduction of the FEL gain. It should then 
be advantageous to transfer a portion of the phase-space 
volume from the transverse to the longitudinal direction, 
so that the condition (a) is more securely fulfilled. Figure 
4 shows an emittance exchange process in a coupling ring 
where a third-order potential ( m = 2 , n = 1 ) is switched 
on. The transverse projected emittances have been 
reduced from 3μm to 2μm after a emittance exchange, 

while the longitudinal emittance becomes three times 
greater. The results of GENESIS simulations based on the 
electron beams before and after this emittance transfer are 
displayed in Fig. 5 that clearly demonstrates the 
advantage of the emittance manipulation. Some numerical 
results concerning linear emittance transfer can also be 
found in Ref. [4]. 
 

 
Figure 5: Results of GENESIS simulations. The broken 
curve was obtained with an original electron beam whose 
rms emittances are ( x , y , z ) = (3μm, 3μm, 0.3μm) . 

As shown in Fig. 4, this emittance combination is altered, 
after a nonlinear emittance exchange, to ( x , y , z ) =  

(2.09 μm, 2.06 μm, 1.23μm)  with which the solid curve 

was obtained. The power of the seed laser, which is not 
essential to the present study, is 105  W. 

Optimum orrelation for FEL 
As is well-known, the resonant wavelength  is 

determined ideally by (1+ K 2 ) w / 2
2  where w and 

K are the spatial period and normalized strength of the 
undulator. In reality, however, the beam has a finite 
energy spread and, furthermore, individual electrons 
execute betatron oscillations that can modify their average 
longitudinal velocities. Incorporating the effect of the 
betatron amplitude in the resonance condition, we obtain 
 

1

2

1+ K 2

2 +
2Jx

x

+
2Jy

y
w ,                (8) 

 
where Jx(y)  denotes the transverse action, and x(y)  is the 

betatron function. This condition implies that, even if the 
energy of an electron is deviated from the design value by 
the amount of , it can still be on resonance with the 
laser, provided [10] 
 

/ x Jx + yJy ,                            (9) 

 
where x(y) is a constant often referred to as the 
“conditioning” parameter. Assuming the parameters in 
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Table. 1, Eq. (9) requires the conditioned phase space as 
depicted in Fig. 6(a) [10]. Such a special correlation can 
roughly be established in a coupling ring by exciting 
nonlinear sources. For instance, let us again take a third-
order situation considered in Fig. 4. It is then possible to 
develop a correlation as shown in Fig. 6(b), by 
intentionally applying a mismatch to an initial beam. The 
resultant distribution is not highly conditioned but clearly 
has a preferable correlation between the energy spread 
and transverse actions (unlike an electron beam provided 
by the linear scheme in Ref. [3] where the projected 
emittances are not partially but only fully exchanged and 
no correlation remains). Results of GENESIS simulations 
plotted in Fig. 7 actually confirm that the FEL 
performance can be considerably improved by such an 
approximate conditioning procedure. 
 

 
Figure 6: Phase-space correlations corresponding to the 
perfectly conditioned beam (left) and to an approximately 
conditioned beam extracted from a third-order coupling 
ring (right). The same FEL parameters as listed in Table 1 
have been taken into account. 

 
Figure 7: Results of GENESIS simulations. The broken 
curve was obtained with an original unconditioned 
electron beam, while the solid curve with the correlated 
beam shown in Fig. 6(b). The dotted curve is the 
evolution of the FEL power achievable with the perfectly 
conditioned beam in Fig. 6(a). 

SUMMARY 
We have studied a method of manipulating a charged-

particle beam in 6D phase space. The present scheme is 
based on a dedicated storage ring containing linear and 
nonlinear coupling sources through which the projected 

emittance of one direction can be transferred to the other 
directions. The emittance transfer becomes most efficient 
when the ring operates on coupling resonances. Since the 
speed of an emittance flow is controllable with lattice 
parameters such as the coupling constant and tunes, the 
ratios of projected emittances can be well optimized for 
diverse purposes. Another important feature of this 
method is the automatic development of various 
correlations between degrees of freedom, which may 
open up a possibility of controlling not only emittance 
ratios but also even details of the particle distribution in 
6D phase space. 

As a typical application of the coupling storage ring, we 
considered FELs where the achievable radiation power is 
quite sensitive to the transverse and longitudinal projected 
emittances of an electron beam. Numerical simulations 
demonstrated that the FEL performance could be 
improved by a partial emittance transfer. It was also 
pointed out that the use of a nonlinear coupling enables us 
to correlate the transverse action with the energy spread 
of a beam.  Although the beam conditioning achieved in 
the present simulation was not perfect, the resultant FEL 
gain actually got better compared to an unconditioned 
case. A further study is, however, needed incorporating 
detailed lattice structures and more accurate effects of 
coupling cavities. 
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