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Abstract 
   The BETACOOL program developed by the JINR 
electron cooling group is a kit of algorithms based on a 
common format of input and output files. The general 
goal of the program is to simulate long term processes (in 
comparison with the ion revolution period) leading to a 
variation of the ion distribution function in six 
dimensional phase space. The BETACOOL program 
includes three algorithms for the simulation of the beam 
dynamics and takes into account the following processes: 
electron cooling, intrabeam scattering, ion scattering on 
residual gas atoms, interaction of the ion beam with an 
internal target and some others.  

INTRODUCTION 
   The goal of the first version of the Betacool program [1] 
was to investigate the electron cooling process using 
formulae for the friction force derived in [2]. Presently 
the program is a kit of algorithms allowing to simulate 
long term processes (in comparison with the ion 
revolution period) leading to the variation of the ion 
distribution function in six dimensional phase space.  
   Evolution of the second order momenta of the ion 
distribution function is realized in the so called “rms 
dynamics” algorithm based on the assumption of a 
Gaussian shape of the distribution. Here all heating and 
cooling effects are characterized by rates of variation of 
the emittances or of particle loss.  
   The investigation of the beam dynamics at arbitrary 
shape of the distribution is performed using multi-particle 
simulation in the frame of the Model Beam algorithm. In 
this algorithm the ion beam is represented by an array of 
model particles. The heating and cooling processes 
involved in the simulations lead to a change of the 
components of the particle momentum and of the particle 
number. 
   During the  last years the program was used for simula-
tions of  ion beam dynamics in the following fields of a 
cooling application: 
- luminosity preservation in ion-ion colliders: 
   RHIC-II (BNL), PAX (FZJ), NICA (JINR), 
- simulations of experiments with internal pellet target: 
   PANDA (GSI, FZJ), WASA at COSY (FZJ), 
- benchmarking of IBS and electron cooling models: 
   CELSIUS (TSL), RHIC (BNL), Recycler (FNAL), 
   Erlangen University, TechX, 
- beam ordering investigations: 
   S-LSR (Kyoto University), COSY (FZJ), NAP-M 
   (BINP), ESR (GSI), 
- simulations of cooling-stacking process: 
   LEIR (CERN), HIRFL-CSR (Lanzhou). 
 

  In this report a brief description of a few basic Betacool 
algorithms is presented. 

PHASE DIAGRAMS 
   Usually a design of a cooling system is started from an 
estimation of the cooling rate required for reaching 
equilibrium at the necessary value of the beam emittance. 
By definition, the cooling (heating) rate is equal to 

dt
dε

ετ
11

= , (1) 

and in the general case it is a function of the beam phase 
volume and intensity. Here ε are the horizontal, vertical or 
longitudinal emittances. An equilibrium between heating 
and cooling processes corresponds to a vanishing  sum of 
the rates: 

∑ =
j j

01
τ

. (2) 

The index j is the number of processes involved in the 
calculations. Equations (2), written for each degree of 
freedom, form a system of non-linear algebraic equations 
describing the equilibrium emittance of the beam. For the 
solution of such systems the phase diagram method was 
developed in the Betacool program. In a phase diagram 
the sum of the rates is plotted as a function of the beam 
emittance (assuming that the horizontal emittance is equal 
to vertical one) and of the momentum spread. The 
crossing of the lines of vanishing sum of the rates at the 
phase diagrams for all three degrees of freedom 
corresponds to an expected equilibrium beam parameters. 
An analysis of the phase diagrams permits to predict some 
peculiarities of the cooling process without simulation of 
its dynamics. For example, the efficiency of this method 
was demonstrated in the simulations of the beam ordering 
process [4].  
   Calculation of the characteristic times is also the basis 
of RMS dynamics algorithm. 

RMS DYNAMICS 
   The physical model used in the rms dynamics 
simulations is based on the following general 
assumptions: 
1) the ion beam has a Gaussian distribution over all  
degrees of freedom and does not change during the 
process. 
2) the algorithm for the analysis of the problem is 
considered as a solution of the equations for the rms  
values of the beam phase space volumes of three degrees 
of freedom. 
3) the maxima of all the distribution functions coincide 
with the equilibrium orbit. 
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The evolution of the ion beam parameters during the 
motion in the storage ring is described by the following 
system of four differential equations: 
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where N is the particle number, εh, εv, εlon are root mean 
square values of horizontal, vertical and longitudinal 
beam emittance, respectively. The characteristic times are 
functions of all three emittances and of the particle 
number and have positive sign for a heating process and 
negative for cooling. A negative sign of a lifetime 
corresponds to particle loss and the sign of the lifetime 
can be positive in the presence of particle injection, when 
the particle number increases. The structure of the 
algorithm  is designed in such a way as to allow for 
including any process into calculation which can be 
described by cooling or heating rates. Numerical solution 
of the system (3) is performed using the Euler method 
with automatic step variation. Results of the simulation 
are the dependences on time of the emittance and particle 
number. 
   The time step in the integration of the system (3)  is 
determined by the characteristic times of the investigated 
effects and the speed of the calculation can be very fast. 
However, in some cases the basic physical model cannot 
provide a realistic simulation mainly due to the basic 
assumption of a Gaussian shape of the ion distribution 
function. This assumption is more or less realistic in an 
equilibrium state of the ion beam when the equilibrium is 
determined by many processes of stochastic nature. If 
there does not exist an equilibrium  due to fast particle 
loss or in the  initial stage of the beam cooling, the ion 
distribution function can be far from Gaussian. The same 
situation takes place in an experiment with internal targets 
which dimensions are not comparable with the ion beam 
dimensions. Neither can be calculated in the framework 
of this model correctly  ionization energy losses of the ion 
beam in the target.  

MODEL BEAM ALGORITHM 
An investigation of the ion beam dynamics with an 

arbitrary shape of the distribution function is performed 
using multi-particle simulation in the frame of the Model 
Beam algorithm. In this algorithm the ion beam is 
presented by an array of modeling particles. Heating and 
cooling processes involved in the simulations lead to a 
change of the particle momentum components and of the 
particle number, which is calculated in accordance with 
the time step of the dynamical simulation. Each effect is 
located at some position of the ring characterized by the 

ring lattice functions. Transformation of the beam inside 
the ring is provided using a linear matrix with a random 
phase advance between the different objects. The results 
of the simulations can be presented both in form of a 
beam profile evolution in time or as time dependencies of 
the beam emittance and the particle number. 
   The Model Beam algorithm is based on the solution of 
the Langevin equation in momentum space that is realized 
in the Betacool program using the Euler method at fixed 
integration step. Action of some physical processes (IBS, 
scattering on gas etc.) results in a regular and (or) 
stochastic variation of the model particle momentum 
components. The momentum variation after the 
integration step of Δt is calculated in accordance with the 
following equation, 

∑
=

Δ+Δ=Δ
3

1
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j
jjiii CttFP ξ ,  (4) 

where i = x, y, s are the horizontal, vertical and 
longitudinal co-ordinates, Fi are the components of the 
friction (or leading) term, ξj are three Gaussian random 
numbers with unit dispersion. The coefficients Ci,j have to 
be calculated from the components of the diffusion tensor. 
In the Betacool program the component of the particle 
momentum are chosen to be ( )pppppp yx /,/,/ Δ . 

In the general case that the components of the diffusion 
tensor  form a diagonal symmetric matrix, 
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and depending on the process some of them can be equal 
to zero. In the presence of diffusion the mean values of 
the variation of the components of the momentum can be 
expressed via components of the diffusion tensor in 
accordance with the definition, 

( )
ji

ji D
dt

PPd
,= ,  (6) 

where triangular brackets mean averaging over the 
particles. From these expressions one can deduce the 
values of the coefficients Ci,j. They have to satisfy the 
following system of equations: 
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This system has an infinite number of solutions but it can 
be simplified when the diffusion tensor has zero 
components. For example for a diagonal diffusion tensor 
(this corresponds to the case when the variations of 
momentum components do not correlate with each other) 
the simplest solution is: 

xxx DC ,1, = , yyy DC ,2, = , zzz DC ,3, = , 

all other coefficients are equal to zero.  
   The Fokker-Plank approach (which is the physical basis 
of the Model Beam algorithm) allows for providing a 
uniform treatment of most of the heating and cooling 
effects, such as electron and stochastic cooling, 
interaction with residual gas and internal gas target, 
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intrabeam scattering process, heating due to noise of 
magnetic system power supply and others. However, 
when an accurate calculation of the distribution tail width 
and intensity is necessary one needs to provide direct 
simulations of the scattering processes. A more important 
example of such a situation is the simulation of an 
experiment with an internal pellet target. 

SIMULATION OF PELLET TARGETS 
   When a beam interacts with an internal pellet target 
each particle crosses the pellet once during a few 
thousands of revolutions in the ring. In this case each 
crossing can be simulated directly. In order to simulate 
the variation of the components of the ion momentum the 
program calculates expectation values of the numbers of 
elementary events after a single crossing of the target, i.e. 
the numbers of ionizations of the target atoms and number 
of scattering on the nuclei. The actual numbers of the 
events is assumed to be distributed around its expectation 
values in accordance with Poisson law. In each 
elementary event the momentum variation is calculated as 
a random number distributed in accordance with 
corresponding law. 
   This algorithm can be illustrated on the example of the 
simulation of the ionization energy loss The variation of 
the longitudinal momentum component is caused mainly 
by the ionization energy loss distributed according to the 
function: 
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The macroscopic cross-section for ionization is 
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Emax is the maximum transferable energy: 
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with me being the electron mass and M  the projectile 
mass. I is the mean excitation energy that can be 
estimated as eVZI 9.016 ⋅= , ΔEBB is the mean energy 
loss after crossing the target calculated in accordance with 
the Bethe-Bloch equation and Δx is the target thickness. 
The number of ionization events n after single crossing 
the target is 

xn ΣΔ= . (11) 
The energy loss due to ionization is calculated as 
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n is the integer number sampled from the Poisson 
distribution, ξi are random numbers uniformly distributed 

in 0 to 1, 
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   The deviation of the longitudinal component of the 
particle momentum is calculated as: 
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where E is the particle kinetic energy per nucleon, A  is 
the particle atomic number. The expectation of the energy 
loss ΔEBB is calculated in accordance with the equation: 
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where ρ is the target density, ZP and ZT are the charge 
numbers of the projectile and target atoms, respectively, 
AT is the target atomic number, δ is the density correction 
factor. K is a constant determined by the following 
expression: 

A
cmrN

A
K eeA

224π
=  = 0.307075 MeV⋅g-1⋅cm2,  

re is the electron classic radius and NA is the Avogadro 
number.  

HIERARCHY OF IBS MODELS 
   Another physical task requiring direct simulation of a 
scattering process is the investigation of the beam 
ordering process. For this goal the simulation of the IBS 
process through Coulomb interaction between particles 
was realized in the tracking algorithm in the Betacool 
program. The Fokker-Plank approach is used in local and 
simplified kinetic models of the IBS process. To speed up 
the calculation a few detailed models of the IBS based on 
analytical expressions for the diffusion power were 
developed. In this chapter a brief description of the IBS 
simulation methods is presented. 

Tracking Algorithm 
A tracking algorithm is used for the simulation of the 

IBS process through Coulomb interaction between ions. 
One of the goals of this algorithm development is to 
simulate a formation of a crystalline state of the ion beam. 
In the crystalline state of the ion beam the IBS process 
cannot be treated in the frame of analytical models which 
are based on the assumption of Gaussian shape of the ion 
distribution function. To speed up the calculations in the 
tracking algorithm the IBS simulations are performed 
using Molecular Dynamics technique. In this case the  
equations of motion are solved for a small number of 
particles located inside a short cell. The influence of all 
other particles is taken into account through periodic 
boundary conditions in the longitudinal direction for the 
particle distribution function and use of Ewald's sum for 
the calculation of Coulomb forces.  Therefore, this 
algorithm can be used for coasting beams only.  
   In the frame of the tracking algorithm  the equations of 
motion of the particles are integrated in the real structure 
of the ring. The ring structure is imported from an input 
MAD file. Each cooling or heating effect involved in the 
calculations together with IBS is located in some optic 
element. Calculation of the variation of the particle 
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coordinates due to the action of an object is provided 
using the map of this object. The position of the object in 
the ring is described in the input MAD file using special 
markers. 

Local Model of IBS and Electron Cooling 
   Calculation of the friction force and diffusion tensor 
components related with the problem of Coulomb 
scattering of a test particle of a mass mt and velocity 
V proceeds in an array of Nloc field particles of  mass mf 
and velocities iv . The solution of this problem is well 

known from plasma physics. For a given distribution 
function f(v)  of the field particles in velocity space the 
friction force is equal to 
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Here α, β = x, y, s, the angular brackets mean averaging 
over the field particles, Zt, Zf are the charge numbers of 
the test and field particle, n is the mean local density of 
the field particles and  vVU −=  is the relative velocity 
of the test and field particle. The minimum and maximum 
impact parameters are determined as in the simulation of 
electron cooling. 
   For a particle array the distribution function of the field 
particles in the velocity space is given as a series of δ - 
functions: 
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The minimum impact parameter in the Coulomb 
logarithm is calculated as 
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The value of the dynamic shielding radius required for the 
maximum impact parameter determination is calculated 
using the  rms velocity spread of the field particles.  
   The algorithm described above can be used for IBS as 
well as for electron cooling simulations. In the case of 
electron cooling simulation the test particle is the ion and 
the field particles are the electrons. In the case of IBS the 
test and the field particles are the same ions. For IBS 
simulation the friction and diffusion components have to 
be calculated in each optic element of the ring. Therefore 
the algorithm is very slow and it is suited only for large  
computers. 

Simplified Kinetic Model 
   To speed up the calculations a simplified kinetic model 
of the IBS process was proposed in [5]. It is based on the 
assumption that the friction force is proportional to the 

particle momentum and to the diffusion constant. The 
friction and diffusion components can be calculated in 
accordance with one of the analytical IBS models. In the 
Betacool program the kinetic model was realized for the 
ring optical structure with non-zero vertical dispersion in 
accordance with [6]. 

Detailed Models 
   The analytical models are used as a basis for a few 
detailed models of the IBS process realized in the 
Betacool program. In Burov’s model [7] the diffusion 
power for each ion is calculated as a function of its action 
variables. In the “core-tail” models the diffusion is 
calculated separately for the particles from a dense core of 
the distribution function and from low intensive tails. 

Analytical Models for IBS Growth Time 
Calculation 
   For the calculation of the IBS growth rates a few 
analytical models are available in the Betacool program. 
Their description can be found in [8]. 
 

ELECTRON COOLING SIMULATION 
In order to solve all the problems related with the 

simulation of the electron cooling process a hierarchy of 
objects was developed in the BETACOOL program. The 
cooling simulation is based on a friction force calculation 
in the particle rest frame. The friction force can be 
calculated in accordance with one of the analytical 
models from a library or by using results of numerical 
calculations imported from an external file. The next layer 
of the simulation is related with a cooler representation as 
a map, transforming particle coordinates from entrance to  
exit of the cooling section and calculating the ion loss 
probability due to recombination with electrons. 
Calculation of the cooler map is based on a model of the 
electron beam that provides transformation of the ion 
velocity to the frame related with the electron beam and 
takes into account the real geometry of the cooler. The 
main models of the electron beam used in the Betacool 
program and a description of the friction force formulae 
are given in [8]. The cooler model takes into account the 
variation of the magnetic field in the cooling section. For 
this purpose the coordinates of the electron beam 
trajectory inside cooling section are input from an 
additional file and the equations of motion of the ions are 
solved numerically inside the cooler.  

The map of the cooler can be used directly in the frame 
of the Molecular Dynamics algorithm or in other tracking 
procedures. On the basis of the map one can calculate the 
kick of the ion momentum after crossing the cooling 
section that is necessary for the simulation of the ion 
distribution evolution in the frame of the Model Beam 
algorithm. The map of the cooler is also used for the  
calculation of the cooling rate that is necessary for the 
simulation of the rms dynamics. The calculation of the 
cooling rate can be performed using two different models 
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of the ion beam, either the cooling rates for “rms” particle 
dynamics or  for the ion beam with Gaussian distributions 
in all degrees of freedom. 
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