A   B   C   D   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   V   W   X   Y   Z  

Noda, K.

Paper Title Page
TUA1C03 Necessary Condition for Beam Ordering 87
 
  • A. V. Smirnov, I. N. Meshkov, A. O. Sidorin
    JINR, Dubna, Moscow Region
  • J. Dietrich
    FZJ, Jülich
  • A. Noda, T. Shirai, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • K. Noda
    NIRS, Chiba-shi
 
  The very low momentum spread for small number of particle was reached on different storage rings. When the sudden reduction of the momentum spread ("phase transition") was observed during decreasing of the particle number it was interpreted as ordered state of ion beams. The most extensive study of ordered ion beams was done on storage rings ESR (GSI, Darmstadt) and CRYRING (MSL, Stockholm). Recently, for the first time, the ordered proton beam has been observed on S-LSR (Kyoto University). From analysis of the ESR experimental results we assumed that the ordered state can be observed if the dependence of momentum spread on the particle number can be approximated as ∆P/P ~ Nk for k < 0.3. In pioneering experiments at NAP-M (INP, Novosibirsk) and, in recent years, at COSY (FZJ, Juelich) the phase transition was not observed and the coefficient was found equal k > 0.5. This report presents the experimental investigations of low intensity proton beams on COSY and S-LSR which have the aim to formulate the necessary conditions for the achievement of the ordered state. The experimental studies on S-LSR and numerical simulations with the BETACOOL code were done for the dependence of the momentum spread and transverse emittances on particle number with different misalignments of the magnetic field at the cooler section. As result of both experimental and numerical studies one can conclude that the necessary condition for the phase transition appearance is k < 0.3.  
slides icon Slides  
THM1I02 Electron Cooling Experiments at S-LSR 139
 
  • T. Shirai, S. Fujimoto, M. Ikegami, A. Noda, H. Souda, M. Tanabe, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • H. Fadil, M. Grieser
    MPI-K, Heidelberg
  • T. Fujimoto, S. I. Iwata, S. Shibuya
    AEC, Chiba
  • I. N. Meshkov, A. V. Smirnov, E. Syresin
    JINR, Dubna, Moscow Region
  • K. Noda
    NIRS, Chiba-shi
 
  Funding: The present work has been supported from Advanced Compact Accelerator Development Project by MEXT of Japan and 21 COE at Kyoto University-Center for Diversity and Universality in Physics.

The ion storage ring, S-LSR in Kyoto University has an electron beam cooler and a laser cooling system. The electron cooler for S-LSR was designed to maximize the cooling length in the limited drift space of the ring. The effective cooling length is 0.44 m, while the total length of the cooler is 1.8 m. The commissioning of the electron cooling was started from October 2005. The 7 MeV proton beam from the linac was used and the first cooling was observed on October 31. The momentum spread became 2×10-4 and the beam diameter was 1.2 mm with the particle number of 2×108 and the electron current of 60 mA. The various experiments have been carried out using the electron cooling at S-LSR. The one-dimensional ordering of protons is one of the important subjects. The momentum spread and the beam size were observed while reducing the particle number. They were measured by the Schottky noise spectrum and the scraper. The particle number was measured by the ionization residual gas monitor. Abrupt jumps in the momentum spread and the Schottky noise power were observed for protons at a particle number of around 2000. The beam temperature was 0.17 meV and 1 meV in the longitudinal and transverse directions at the transition particle number, respectively. The normalized transition temperature of protons is close to those of heavy ions at ESR. The lowest momentum spread below the transition was 1.4×10-6, which corresponded to the longitudinal beam temperature of 0.026 meV (0.3 K). It is close to the longitudinal electron temperature. The transverse temperature of the proton beam was much below that of electrons (34 meV). It is the effect of the magnetized electron.

 
FRM1I01 Present Status and Recent Activity on Laser Cooling at S-LSR 221
 
  • A. Noda, M. Ikegami, T. Ishikawa, M. Nakao, T. Shirai, H. Souda, M. Tanabe, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • M. Grieser
    MPI-K, Heidelberg
  • I. N. Meshkov, A. V. Smirnov
    JINR, Dubna, Moscow Region
  • K. Noda
    NIRS, Chiba-shi
 
  Funding: The present work has been supported from Advanced Compact Accelerator Development Project by MEXT of Japan and 21 COE at Kyoto University-Center for Diversity and Universality in Physics.

Ion storage and cooler ring, S-LSR, has been designed to enable the investigation of coldest possible ion beams with use of various beam cooling schemes such as an electron beam cooling and the laser cooling. Electron beam cooling of 7 MeV protons and laser cooling of 40 keV Mg ions have been applied up to now. The first laser cooling applied to ~108 Mg ions with the induction accelerator voltage of ~6 mV reduced the momentum spread (1 σ) from 1.7×10-3 to 2.9×10-4, which is considered to be saturated by the momentum transfer from transverse degree of freedom to the longitudinal one due to intra-beam scattering. The laser cooling force has been improved from the above one more than one order of magnitude owing to the precise alignment between the laser and Mg ion beam. Recent measurement with frequency shift of the laser showed the enhancement of the coherent signals in odd harmonics of the revolution frequency picked up with an electrostatic beam monitor and detailed measurements of various harmonics have been performed with changing the resolution bandwidth of the spectrum analyzer, although the origin of such coherency is not yet identified up to now. For the purpose of measurement of lowest possible temperature attainable by the laser cooling, measurement with reducing the ion numbers of Mg is needed, which has been blocked by the difficulty of observing the Schotty signal of such a low intensity beam. So as to cope with this situation, development of observing system of emitted light by the transition from the upper level to the ground state with the use of photomultiplier has been performed, which recently succeeded in detection of clear signals coming from the oriented process. Activities above mentioned will be presented together with the forth coming experimental results on laser cooling.

 
slides icon Slides