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ABSTRACT 

We are preparing a comprehensive specification for 
the computer control system of a cyclotron and treat­
ment facility that provides particle beams for cancer 
treatments with fast neutrons, production of medical iso­
topes, and physics experiments. The informal (prose) 
specification describes the control system as thoroughly 
as is practical using standard technical English, supple­
mented by tables, diagrams, and some algebraic equa­
tions. We are supplementing the prose specification with 
a formal (mathematical) specification. Potential advan­
tages of formal specifications are discussed, and expe­
riences writing and using formal specifications are de­
scribed. 

1. INTRODUCTION 

The Clinical Neutron Therapy System (CNTS) at 
the University of Washington is a cyclotron and treat­
ment facility that provides particle beams for cancer 
treatments with fast neutrons, production of medical 
isotopes, and physics experiments. The facility was in­
stalled in 1984, and includes a computer control system 
provided by the cyclotron vendor.l} The University is 
now developing a new, successor control system. This de­
velopment project is motivated by requirements to make 
the system easier and quicker to use, easier to maintain, 
and able to accomodate future hardware and software 
modifications. 2) 

We are attempting to achieve high reliability and 
safety by applying rigorous software development and 
quality assurance practices. Modern recommendations 
for the development of safety-critical computer-based 
systems3,4) emphasize the need for an explicit statement 
offunctional and safety requirements, and a development 
process that can be shown to produce an implementation 
that meets the requirements. A central idea is that de­
velopers should provide a functional specification that 
allows system outputs to be predicted if system inputs 

are described. 
We determined that our first step in this project 

should be the production of a comprehensive specifica­
tion for the new control system, to serve as an authorita­
tive and complete guide for software development, test­
ing, and instruction of facility users. 

2. THE INFORMAL SPECIFICATION 

We first prepared an informal (prose) specification, 
expressed in standard technical English, supplemented 
by tables, diagrams, and some algebraic equations. 

The informal specification consists of four parts. 
Part I is an overview of the system that describes the 
facility, the hardware organization of controls, and intro­
duces much of the vocabulary used in subsequent parts. 
It comprises almost 100 pages of single-spaced text. Part 
II is a detailed specification of operations which users 
perform at video terminals and control consoles. It com­
prises over 250 pages, including many illustrations of dis­
plays. Part III will be a detailed specification of internal 
operations involving the cyclotron and therapy appara­
tus itself, which are only indirectly visible to users, and 
will comprise about 100 pages. Part IV will be a largely 
tabular presentation of numerical operating parameters 
whose values can be changed independently of the rest 
of the specification. We plan to maintain these tables in 
a relational database. 

Parts I and II have been prepared for distribution 
outside our department as technical reports 5

,G) and we 
anticipate releasing the other parts as they are completed 
in coming months. 

3. FORMAL SPECIFICATIONS 

The prose specification is organized to help facility 
users read and understand it, so they can offer meaning­
ful reviews. However, this organization is not necessarily 
the best for purposes of programming and analysis. An 
alternative is to make greater use of mathematical nota-
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tions, annotated sparingly with English. Such specifica­
tions are called formal specifications. 

Formal specifications are distantly related to popu­
lar design notations based on data flow diagrams, which 
have been applied to acclerators. 7

) We are investigating 
notations that provide more mathematical rigor, in the 
sense that they allow more properties to be inferred or 
calculated. 

There are potential advantages to developing pro­
grams from formal specifications. They can be more pre­
cise and compact than English specifications, and can be 
automatically checked for certain kinds of errors. They 
can be used to prove or calculate whether the specifi­
cied behavior is consistent with certain intended prop­
erties, such as safety. Formal specifications can support 
systematic software development methods where every 
development step can be justified and checked. 

4. A FORMAL CASE STUDY 

We have prepared a formal specification for com­
putations that calculate control system state variables 
from input/output device register contents (and vice­
versa). Specified behaviors include scaling and offsetting 
analog quantities to match data converters (ADC's and 
DAC's), adjusting analog quantities according to calibra­
tion curves, encoding groups of digital signals as discrete 
variables, and detection of errors (where clients invoke 
operations with invalid parameters) and faults (where 
input/output devices report inconsistent data). 

Our specification is motivated by our facility but is 
quite generic and should be widely applicable. It is pa­
rameterized so that an implementation can be adapted 
to different control systems by providing tables of con­
figuration data, rather than changing executable code. 
The specification is not merely descriptive, but is also 
used in the formal development of a detailed design. 

We used a formal notation called Z8,9) (pronounced 
zed) for this work because it is a good match to our cho­
sen table-driven strategy. Some of our preliminary exper­
iments with Z have appeared,10) and we have prepared a 
detailed report of the present work.11) Excerpts appear 
in the following subsections. This brief report does not 
permit much explanation, so these excerpts will not be 
meaningful to readers unfamiliar with Z; they are only 
included to show what a formal specification looks like. 

4.1. The System Configuration and the System 
State 

At the lowest level, input/output is accomplished by 
data converter hardware. Data converters accomodate 
signals connected to the controlled process. Signals may 
be digital or analog, and carry information which is input 
or output with respect to the computer. 

Data converters contain registers. Every register is 
identified by a unique address, and holds contents that 
encode the value of one signal in a form intelligible to the 
computer. In any particular configuration, a fixed set of 
addresses is populated with registers. 

We distinguish register contents from control pro­
gram state variables. While registers hold contents, vari­
ables have values. 

Expressed in Z, we have: 

[ADDR, CONTENTS, VAR, VALUE] 

ioreg : IP ADDR 
iovar : IP VAR 
map: VAR <-> ADDR 

map ~iovar~ ~ ioreg 

Sys ______________________________ _ 

[

register: ADDR -+t CONTENTS 
variable: VAR -+t VALUE 

-------

dom register = ioreg 

dom variable n dom map ~ ~~var __ 

The sets ioreg and iovar, and the relation map 
model some of the tables that describe the configuration. 
We have actually specified a whole family of control sys­
tems, where each assignment of values to ioreg, iovar and 
map determines a particular control system that belongs 
to the family. 

4.2. Translating between Registers and State 
Variables 

The function encode determines the translation be­
tween variable values and register contents. The oper­
ation Translate uses encode to calc.ulate variable values 
from register contents (or vice versa): 

encode: 
(ADDR -+t CONTENTS) -+t VAR -+t VALUE 

Trans late ______________ _ 

!::::.Sys 
vars? : IP VAR 

variable' = 1,ariable EB vars? <j encode registel" 

This schema can be specialized in each direction. 

Encode == [ Translate 11'egister' = register] 

Decode == [ Translate I variable' = variable] 
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4.3. Formal Development 

We have not yet shown how the all-important func­
tion encode is constructed. In the full reportll ) we con­
struct the function encode from configuration tables, cal­
ibration formulas and other available information. A se­
ries of representations for encode are presented, where 
each successive version provides more detail. We find 
that encode can be expressed: 

encode register v = 
translatcseq (class v) (addr _seq v 9 register) 

This suggests an effic.ient implementation in an im­
perative programming language, as explained in the full 
report.ll ) 

4.4. Non-constructive Definitions 

Formal spec.ifications bear a superfic.ial resemblance 
to executable programs, but there is an important differ­
ence: programs must be constructive, but specifications 
can be non-constructive. This is an advantage because 
non-constructive definitions can be concise and expres­
sive. For example, they make it easy to define inverse op­
erations, as in the definition of the Decode operation that 
translates state variable values to register contents (sec­
tion 4.2). However, at some point it is necessary to show 
how items so defined can be implemented; this requires 
converting them to constructive form, as demontrated in 
the full reportY) 

4.5. Handling Errors and Faults 

In most computing applications, it is expected that 
programs should detect and report errors (where clients 
invoke operations with invalid parameters), but it is left 
to the users to deal with faults (where operations fail 
despite valid invocation by the client). Control systems 
differ from other computing applications in part because 
they are expected to handle some faults. 

An advantage of a formal specification is that it isn't 
necessary to rely solely on inspiration to discover poten­
tial errors and faults; some of them can be calculated. 
The precondition of an operation desc.ribes the set of ini­
tial states for which a final state is defined. States which 
do not satisfy the precondition of an operation are usu­
ally those that designers consider erroneous or faulty. It 
is poor practice to implement operations that admit such 
states, since their response to errors and faults is unde­
fined. For our operation Encode, the precondition is: 

PreEncode ~ :J Sys' • Encode 

The expression on the right can be expanded: 

PreEncode __________________________ ___ 

Sys 
vars? : IF' VAR 

vars? ~ iovar 
:J reg: IF' register. Reg Valid 

The first line in the predicate deals with the input 
parameter vars?; failure to satisfy this predicate is an 
error. The second deals with the contents of register; 
failure to satisfy this predicate is a fault. 

We must extend the specification to deal with such 
conditions. When an error or fault is detected, it should 
be reported, but the system state must not otherwise 
change, for example: 

BadReg 
3Sys 

----------------------

vars? : IF' VAR 
status: STATUS 

status = bad reg 
-, (:J reg : IF' register • Reg Valid) 

A similar schema BadVar describes the case where 
the input variables are not valid. Then the Encode op­
eration can be extended: 

T _Encode ~ 
(Encode 1\ Success) V Bad Var V BadReg 

These three outcomes exhaust all possibilities. 
Therefore, the operation T _.Encode is defined in every 
possible state. 

4.6. Checking the Development 

An important advantage of formal development is 
that each step can be calculated, inferred or otherwise 
formally justified, and then checked. This ability to 
check each intermediate development step, rather than 
having to wait until an executable program can be pro­
duced and tested, distinguishes formal development from 
more intuitive software development methods. 

In addition to checking each step in turn, the entire 
development can be checked against the original require­
ments. For example, we would like to claim, 

"All possible inputs will be handled properly" 

but this statement is much too vague to relate to 
our formal specification. Trying again, we say, 

"If the configuration tables are accurate, then 
valid input signals will be translated to the 
proper state variable values, and invalid input 
signals will be detected." 
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Here the features of the formal specification begin 
to emerge, but we need still more detail. Trying once 
again, we begin, 

"If a group of signals are entered into the rout­
ing table, and the addresses to which the signals 
are connected are populated, and the signals are 
found in the tables to be members of recognized 
classes, and the value of each signal falls within 
the permitted range for its class membership, 
and ... " 

Rather than press on in this vein, we resort to formal 
notation. We are trying to state a hypotheses about 
signals: 

_ Sig Valid ~ ___ . _____ ~ ____ ~ 
sigs: IP SIGNAL 
scontents : SIGNAL --H CONTENTS 

sigs = dom scontents 
TOuting ~sigs~ <::;: ioreg 
member ~sigs~ <::;: ran classdef 
:3 Reg Valid. 
sigs = signaqvars?~ /\ 
scontents = { a : dom reg. routing- a I--> reg a } 

-- --- ---------------

Other parts of the hypothesis can be formalized in 
the same way. A formal conjecture which expresses the 
requirement, "All valid signals will be handled properly", 
IS: 

Sig Valid /\ SigMatch Var /\ Encode r 

V v : vars? • :3 c : CLASS. c = class v /\ 
variable' v = 
translate c {s : sigs • member s I--> scontents s} 

Proving this conjecture could check for errors in 
the development, and provide confidence that the for­
mal specification expresses the intended requirements. 

5. FUTURE WORK 

The first formally-specified subsystem scheduled for 
implementation is the controller for the leaf collimator 
that is used to shape the therapeutic neutron beam. 2) 

The program will be written in a Pascal dialect 12 ) and 
will run on a Digital Equipment Corporation MicroVAX 
II computer. 
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