
FORMAL SPECIFICATIONS FOR A CYCLOTRON CONTROL SYSTEM

Jonathan Jacky and Ruedi Risler

Department of Radiation Oncology,
University of Washington,
Seattle, WA 98195, USA

ABSTRACT

We are preparing a comprehensive specification for
the computer control system of a cyclotron and treat­
ment facility that provides particle beams for cancer
treatments with fast neutrons, production of medical iso­
topes, and physics experiments. The informal (prose)
specification describes the control system as thoroughly
as is practical using standard technical English, supple­
mented by tables, diagrams, and some algebraic equa­
tions. We are supplementing the prose specification with
a formal (mathematical) specification. Potential advan­
tages of formal specifications are discussed, and expe­
riences writing and using formal specifications are de­
scribed.

1. INTRODUCTION

The Clinical Neutron Therapy System (CNTS) at
the University of Washington is a cyclotron and treat­
ment facility that provides particle beams for cancer
treatments with fast neutrons, production of medical
isotopes, and physics experiments. The facility was in­
stalled in 1984, and includes a computer control system
provided by the cyclotron vendor.l} The University is
now developing a new, successor control system. This de­
velopment project is motivated by requirements to make
the system easier and quicker to use, easier to maintain,
and able to accomodate future hardware and software
modifications. 2)

We are attempting to achieve high reliability and
safety by applying rigorous software development and
quality assurance practices. Modern recommendations
for the development of safety-critical computer-based
systems3,4) emphasize the need for an explicit statement
offunctional and safety requirements, and a development
process that can be shown to produce an implementation
that meets the requirements. A central idea is that de­
velopers should provide a functional specification that
allows system outputs to be predicted if system inputs

are described.
We determined that our first step in this project

should be the production of a comprehensive specifica­
tion for the new control system, to serve as an authorita­
tive and complete guide for software development, test­
ing, and instruction of facility users.

2. THE INFORMAL SPECIFICATION

We first prepared an informal (prose) specification,
expressed in standard technical English, supplemented
by tables, diagrams, and some algebraic equations.

The informal specification consists of four parts.
Part I is an overview of the system that describes the
facility, the hardware organization of controls, and intro­
duces much of the vocabulary used in subsequent parts.
It comprises almost 100 pages of single-spaced text. Part
II is a detailed specification of operations which users
perform at video terminals and control consoles. It com­
prises over 250 pages, including many illustrations of dis­
plays. Part III will be a detailed specification of internal
operations involving the cyclotron and therapy appara­
tus itself, which are only indirectly visible to users, and
will comprise about 100 pages. Part IV will be a largely
tabular presentation of numerical operating parameters
whose values can be changed independently of the rest
of the specification. We plan to maintain these tables in
a relational database.

Parts I and II have been prepared for distribution
outside our department as technical reports 5

,G) and we
anticipate releasing the other parts as they are completed
in coming months.

3. FORMAL SPECIFICATIONS

The prose specification is organized to help facility
users read and understand it, so they can offer meaning­
ful reviews. However, this organization is not necessarily
the best for purposes of programming and analysis. An
alternative is to make greater use of mathematical nota-

Proceedings of the 13th International Conference on Cyclotrons and their Applications, Vancouver, BC, Canada

689

tions, annotated sparingly with English. Such specifica­
tions are called formal specifications.

Formal specifications are distantly related to popu­
lar design notations based on data flow diagrams, which
have been applied to acclerators. 7

) We are investigating
notations that provide more mathematical rigor, in the
sense that they allow more properties to be inferred or
calculated.

There are potential advantages to developing pro­
grams from formal specifications. They can be more pre­
cise and compact than English specifications, and can be
automatically checked for certain kinds of errors. They
can be used to prove or calculate whether the specifi­
cied behavior is consistent with certain intended prop­
erties, such as safety. Formal specifications can support
systematic software development methods where every
development step can be justified and checked.

4. A FORMAL CASE STUDY

We have prepared a formal specification for com­
putations that calculate control system state variables
from input/output device register contents (and vice­
versa). Specified behaviors include scaling and offsetting
analog quantities to match data converters (ADC's and
DAC's), adjusting analog quantities according to calibra­
tion curves, encoding groups of digital signals as discrete
variables, and detection of errors (where clients invoke
operations with invalid parameters) and faults (where
input/output devices report inconsistent data).

Our specification is motivated by our facility but is
quite generic and should be widely applicable. It is pa­
rameterized so that an implementation can be adapted
to different control systems by providing tables of con­
figuration data, rather than changing executable code.
The specification is not merely descriptive, but is also
used in the formal development of a detailed design.

We used a formal notation called Z8,9) (pronounced
zed) for this work because it is a good match to our cho­
sen table-driven strategy. Some of our preliminary exper­
iments with Z have appeared,10) and we have prepared a
detailed report of the present work.11) Excerpts appear
in the following subsections. This brief report does not
permit much explanation, so these excerpts will not be
meaningful to readers unfamiliar with Z; they are only
included to show what a formal specification looks like.

4.1. The System Configuration and the System
State

At the lowest level, input/output is accomplished by
data converter hardware. Data converters accomodate
signals connected to the controlled process. Signals may
be digital or analog, and carry information which is input
or output with respect to the computer.

Data converters contain registers. Every register is
identified by a unique address, and holds contents that
encode the value of one signal in a form intelligible to the
computer. In any particular configuration, a fixed set of
addresses is populated with registers.

We distinguish register contents from control pro­
gram state variables. While registers hold contents, vari­
ables have values.

Expressed in Z, we have:

[ADDR, CONTENTS, VAR, VALUE]

ioreg : IP ADDR
iovar : IP VAR
map: VAR <-> ADDR

map ~iovar~ ~ ioreg

Sys ______________________________ _

[

register: ADDR -+t CONTENTS
variable: VAR -+t VALUE

dom register = ioreg

dom variable n dom map ~ ~~var __

The sets ioreg and iovar, and the relation map
model some of the tables that describe the configuration.
We have actually specified a whole family of control sys­
tems, where each assignment of values to ioreg, iovar and
map determines a particular control system that belongs
to the family.

4.2. Translating between Registers and State
Variables

The function encode determines the translation be­
tween variable values and register contents. The oper­
ation Translate uses encode to calc.ulate variable values
from register contents (or vice versa):

encode:
(ADDR -+t CONTENTS) -+t VAR -+t VALUE

Trans late ______________ _

!::::.Sys
vars? : IP VAR

variable' = 1,ariable EB vars? <j encode registel"

This schema can be specialized in each direction.

Encode == [Translate 11'egister' = register]

Decode == [Translate I variable' = variable]

Proceedings of the 13th International Conference on Cyclotrons and their Applications, Vancouver, BC, Canada

690

4.3. Formal Development

We have not yet shown how the all-important func­
tion encode is constructed. In the full reportll) we con­
struct the function encode from configuration tables, cal­
ibration formulas and other available information. A se­
ries of representations for encode are presented, where
each successive version provides more detail. We find
that encode can be expressed:

encode register v =
translatcseq (class v) (addr _seq v 9 register)

This suggests an effic.ient implementation in an im­
perative programming language, as explained in the full
report.ll)

4.4. Non-constructive Definitions

Formal spec.ifications bear a superfic.ial resemblance
to executable programs, but there is an important differ­
ence: programs must be constructive, but specifications
can be non-constructive. This is an advantage because
non-constructive definitions can be concise and expres­
sive. For example, they make it easy to define inverse op­
erations, as in the definition of the Decode operation that
translates state variable values to register contents (sec­
tion 4.2). However, at some point it is necessary to show
how items so defined can be implemented; this requires
converting them to constructive form, as demontrated in
the full reportY)

4.5. Handling Errors and Faults

In most computing applications, it is expected that
programs should detect and report errors (where clients
invoke operations with invalid parameters), but it is left
to the users to deal with faults (where operations fail
despite valid invocation by the client). Control systems
differ from other computing applications in part because
they are expected to handle some faults.

An advantage of a formal specification is that it isn't
necessary to rely solely on inspiration to discover poten­
tial errors and faults; some of them can be calculated.
The precondition of an operation desc.ribes the set of ini­
tial states for which a final state is defined. States which
do not satisfy the precondition of an operation are usu­
ally those that designers consider erroneous or faulty. It
is poor practice to implement operations that admit such
states, since their response to errors and faults is unde­
fined. For our operation Encode, the precondition is:

PreEncode ~ :J Sys' • Encode

The expression on the right can be expanded:

PreEncode __________________________ ___

Sys
vars? : IF' VAR

vars? ~ iovar
:J reg: IF' register. Reg Valid

The first line in the predicate deals with the input
parameter vars?; failure to satisfy this predicate is an
error. The second deals with the contents of register;
failure to satisfy this predicate is a fault.

We must extend the specification to deal with such
conditions. When an error or fault is detected, it should
be reported, but the system state must not otherwise
change, for example:

BadReg
3Sys

vars? : IF' VAR
status: STATUS

status = bad reg
-, (:J reg : IF' register • Reg Valid)

A similar schema BadVar describes the case where
the input variables are not valid. Then the Encode op­
eration can be extended:

T _Encode ~
(Encode 1\ Success) V Bad Var V BadReg

These three outcomes exhaust all possibilities.
Therefore, the operation T _.Encode is defined in every
possible state.

4.6. Checking the Development

An important advantage of formal development is
that each step can be calculated, inferred or otherwise
formally justified, and then checked. This ability to
check each intermediate development step, rather than
having to wait until an executable program can be pro­
duced and tested, distinguishes formal development from
more intuitive software development methods.

In addition to checking each step in turn, the entire
development can be checked against the original require­
ments. For example, we would like to claim,

"All possible inputs will be handled properly"

but this statement is much too vague to relate to
our formal specification. Trying again, we say,

"If the configuration tables are accurate, then
valid input signals will be translated to the
proper state variable values, and invalid input
signals will be detected."

Proceedings of the 13th International Conference on Cyclotrons and their Applications, Vancouver, BC, Canada

691

Here the features of the formal specification begin
to emerge, but we need still more detail. Trying once
again, we begin,

"If a group of signals are entered into the rout­
ing table, and the addresses to which the signals
are connected are populated, and the signals are
found in the tables to be members of recognized
classes, and the value of each signal falls within
the permitted range for its class membership,
and ... "

Rather than press on in this vein, we resort to formal
notation. We are trying to state a hypotheses about
signals:

_ Sig Valid ~ ___ . _____ ~ ____ ~
sigs: IP SIGNAL
scontents : SIGNAL --H CONTENTS

sigs = dom scontents
TOuting ~sigs~ <::;: ioreg
member ~sigs~ <::;: ran classdef
:3 Reg Valid.
sigs = signaqvars?~ /\
scontents = { a : dom reg. routing- a I--> reg a }

-- --- ---------------

Other parts of the hypothesis can be formalized in
the same way. A formal conjecture which expresses the
requirement, "All valid signals will be handled properly",
IS:

Sig Valid /\ SigMatch Var /\ Encode r

V v : vars? • :3 c : CLASS. c = class v /\
variable' v =
translate c {s : sigs • member s I--> scontents s}

Proving this conjecture could check for errors in
the development, and provide confidence that the for­
mal specification expresses the intended requirements.

5. FUTURE WORK

The first formally-specified subsystem scheduled for
implementation is the controller for the leaf collimator
that is used to shape the therapeutic neutron beam. 2)

The program will be written in a Pascal dialect 12) and
will run on a Digital Equipment Corporation MicroVAX
II computer.

6. REFERENCES

1) Ruedi Risler, Juri Eenmaa, Jonathan P. Jacky, Ira J.
Kalet, Peter Wootton, and S. Lindbaeck. Installa­
tion of the cyclotron based clinical neutron therapy

system in Seattle. In Proceedings of the Tenth Inter­
national Conference on Cyclotrons and their Applica­
tions, pages 428 - 430, IEEE, East Lansing, Michigan,
May 1984.

2) R. Risler, P. Wootton, F. Ziai, J. Jacky, S. Brossard,
and 1. Kalet. Continued operation of the Seattle clin­
ical cyclotron facility. (This proceedings).

3) Great Britain Health and Safety Executive. Pro­
grammable Electronic Systems in Safety Related Ap­
plications. Volume 1: An Introductory Guide. Volume
2: General Technical Guidelines. Her Majesty's Sta­
tionery Office, London, 1987.

4) Nancy G. Leveson. Software safety: what, why and
how. ACM Computing Surveys, 18(2):125-163, June
1986.

5) Jonathan Jacky, Ruedi Risler, Ira Kalet, and Peter
Wootton. Clinical Neutron Therapy System, Con­
trol System Specification, Part I: System Overview
and Hardware Organization. Technical Report 90-
12-01, Radiation Oncology Department, University
of Washington, Seattle, WA, December 1990.

6) Jonathan Jacky, Ruedi Risler, Ira Kalet, Peter Woot­
ton, and Stan Brossard. Clinical Neutron Ther­
apy System, Control System Specification, Part II:
User Operations. Technical Report 92-05-01, Radi­
ation Oncology Department, University of Washing­
ton, Seattle, WA, May 1992.

7) G. A. Ludgate, B. Haley, L. Lee, and Y. N. Miles.
The use of structured analysis and design in the en­
gineering of the TRIUMF data acquisition and anal­
ysis system. IEEE Transactions on Nuclear Science,
NS34(1):157 - 161, 1987.

8) J. M. Spivey. The Z Notation: A Reference Manual.
Prentice-Hall, New York, 1989.

9) Ben Potter, Jane Sinclair, and David Till. An Intro­
duction to Formal Specification and Z. Prentice Hall
International (UK) Ltd, Hemel Hempstead, Hertford­
shire, 1991.

10) Jonathan Jacky. Formal specifications for a clini­
cal cyclotron control system. In Mark Moriconi, edi­
tor, Proceedings of the A CM SIGSOFT International
Workshop on Formal Methods in Software Develop­
ment, pages 45 - 54, Napa, California, USA, May 9 -
11 1990. (also in ACM Softwa7'e Engineering Notes,
15(4), Sept. 1990).

11) Jonathan Jacky. Formal Specification and Develop­
ment of Control System Input/OutPltt. Technical Re­
port 92-05-02, Radiation Oncology Department, Uni­
versity of Washington, Seattle, WA, May 1992.

12) Digital Equipment Corporation. VAXELN Techni­
co.! Summary. Digital Equipment Corporation, May­
nard, MA, 1984.

Proceedings of the 13th International Conference on Cyclotrons and their Applications, Vancouver, BC, Canada

692

