THE YIELDS OF CYCLOTRON-PRODUCED RADIOISOTOPES FOR MEDICAL PURPOSES

M. A. Chaudhri Department of Medical Physics, Austin Hospital, Heidelberg 3084, Australia, and University of Melbourne

SUMMARY

The yields of most medical radioisotopes, produced with cyclotrons of various sizes through different nuclear reactions in laboratories around the world, and reported in literature since 1980, are presented. This

compilation, combined with our previous publications (covering published data up until 1980)^{1,2} would form a comprehensive collection of yields of cyclotron-produced medical radioisotopes. It would greatly help in selecting the most suitable nuclear reaction, and irradiation conditions, for producing a particular isotope. Such a compilation would also be useful in assessing various losses of isotopes during handling and chemical processing of the irradiated target.

INTRODUCTION

Production of radioisotopes for medical use is by far the most widely used and profitable application of cyclotrons. Presently, many isotopes are being produced by cyclotrons around the world for research and routine work in fields like nuclear medicine, nuclear biology, etc. Generally, neutron-deficient carrier-free and short-lived isotopes, which cannot be conveniently or at all produced with a reactor, are produced with cyclotrons. However, at the same time, neutron-enriched isotopes can also be produced with a cyclotron, if required, through nuclear reactions of the type (d,p), $({}^{3}He,p)$, (q,p), etc.

In our previous publications we presented the yields of many cyclotron-produced isotopes of medical interest, which were reported in the literature until 1980. 1,2

In the present paper, we have considered some of those publications which have appeared since 1980. These, combined with our previous publications, should provide a comprehensive compilation of the yields of cyclotron-produced medical radioisotopes, and help in choosing the most suitable method for producing a particular isotope.

METHODS AND RESULTS

The production mode and respective yields of radio-isotopes at different energies, and from various targets, are summarized in Table 1. The yield figures given in the table are either actually obtained production yields or those calculated by authors from experimentally measured excitation functions.

In compiling the table, attempts have been made to include most of the significant published data, since 1980, regarding the production of various isotopes for biomedical applications. However, it is possible that some publications might have been inadvertently omitted.

The actual production cost of any particular isotope, dollars per millicurie, can be easily estimated from the yield figures, the running cost of the accelerator, the cost of the materials and the man-hours involved in the production and subsequent chemical processing (which can be seen from respective references). When one does these calculations one finds that, in most cases, the actual cost of producing an isotope is much less than that charged by the commercial organizations.

TABLE I

THE PRODUCTION MODES AND YIELDS OF SOME CYCLOTRON-PRODUCED ISOTOPES

T¹₂ - half-life : m - minutes : h - hours : d - days

 ${\tt M}$ - experimentally measured yields at the end of the bombardment E.O.B.

C - calculated yields using experimentally measured excitation functions

S.B. - saturation bombardment (bombardment duration of at least 4-5 times the

half-life of the isotope being produced)

M.S.B. and C.S.B. - measurements and calculations at saturation bombardment

				Bombarding	Production Yield		
Isotope	Тţ	Reaction	Target Material	Energy (MeV) IN - OUT	(a) mCi/μA (b) mCi/μAh	Remarks	Ref
¹¹ c	20.4m	¹⁴ N(p,α)	N ₂ - 94.5%	18	140 (a)	M.S.B.	3
(as HCN)			н ₂ 5.5%				

Isotope	Тż	Reaction	Target Material	Bombarding Energy (MeV) IN - OUT	Produc (a) r (b) r	tion Yield mCi/µA mCi/µAh	Remarks	Ref.
¹³ N	9.96m	¹⁶ ₀ (p,α)	Circulating ^H 2 ⁰ target	20	500 mC: 50 ml a	i of 13 in at 20 μΑ		4
		U	^H 2 ⁰	14	35.8	(a)	M.S.B.	5
140	1.18m	$14_{N}(p,\alpha)$	14 _N	8	0.7	(a)	C.S.B.	6
			U	10	2.4	(a)	C.S.B.	6
¹⁵ 0	2.04m	14 _N (d,n)	14 _{N2}	6	32	(a)	C.S.B.	6
		н	<u>ک</u> ۳	8	50	(a)	C.S.B.	6
		1	14 with 2 5% H ₂	10	72	(a)	С.S.В.	7
			14 _{N2} with 2%02	10.2	57 ·	(a)	C.S.B.	7
		15 _N (p,n)	¹⁵ N ₂	6	15	(a)	C.S.B.	6
		п	n	8	47	(a)	C.S.B.	6
		"	•	10	69	(a)	C.S.B.	6
		¹⁶ 0 (p,pn)	02	29	30	(a)	M.S.B.	8
18 _F	1.83h	16 ₀ (³ He,p)	Water	36	10	(b)	М	9
		16_0^+ (³ He,pn)						
		18 ₀ (p,n)	18 ₀ (thick)	10	150	(a)	M.S.B.	10
		4	H ₂ ¹⁸ 0	10	47	(b)	м	9
			(99% enriched)	14	216	(a)	C.S.B.	11
			n	11 - 3	60	(b)	С	12
			•	16 - 3	80	(b)	С	12
			**	16.5 - 4	180	(a)	С.S.В.	13
			"	15/16	156	(b)	М	14
					170	(a)	M.S.B.	14
		22	20	15	43.2	(b)	M	15
		Ne(d,α)	²⁰ Ne ₂	9.4	67	(a)	M.S.B.	16
				• 14.0	82	(a)	M.S.B.	16
			20 _{Ne2} (With 0.09-5% F ₂)	⊥4	17	(b)	М	17
			$20 \text{ Ne}_{2 + F2}$	14 - 2	28	(b)	с	12
			²⁰ Ne ₂ + H2	8 - 2	17	(b)	с	12
		²⁰ Ne ^(p,2pn)	Ne natural	40	40	(a) [`]	M.S.B.	8
28 _{Mg}	21.lh	Proton spallation	KCl pressed pelle 0.8 cm thick stainless ste container	191 in eel	0.0051 (98 mCi specifi at E.O.	(b) ./µg .c activity B.)	М.S.B.	18

т	А	в	L	Е	I	(cont'd)
		-				

Proceedings of the Eleventh International Conference on Cyclotrons and their Applications, Tokyo, Japan

Taabaaa		Desetion	Target	Bombarding Energy (MeV)	Product Yield mCi/µA	ion (a)	_	
Isotope	T 52	Reaction	Material	IN - OUT	mCı/µAh	(b)	Remarks	Ref.
³⁰ P	2.5m	² Al (α,n)	High purity Al	28	2	(b)	М	19
		:		u	4.6	(b)	с	19
^{34m} C1	32m	³⁴ (p,n)	H S nat.	22	0.35	(b)	М	20
		34 _s (d,n)	•	12	0.015	(b)	М	20
³⁸ ĸ	7.6m	³⁵ Cl (α,n)	NaCl solid	14.7	0.6	(a)	M.S.B. (average of 21 runs)	21
		40 Ca (d,α)	Ca0 solid	7.8	0.28	(a)	M.S.B.	21
52 _{MP}	5.6d	⁵² Cr (p,n)	Natural Cr	10	0.035	(b)	M 24h post-	22
MUN		-					irradiation	
52m	21.lm	⁵² Cr (p,n)	<i>u</i> 11	10	40	(a)	M.S.B.	22
מוייז הה	יר סו	54	54				-	
Co .	⊥ö.2h .	re (a,n)	re2 03	12 - 6	1.725	(b)	С	23
			(97.1%	1	1.692	(b)	M	23
- 7	2713	57	enriched)			· ·		
°′Co	2/10	From Ni	-	- ;	0.002	2(b)	C 272h post- irradiation	24
57 _{N i}	36h	⁵⁹ Co (p,3n)	Cobalt Metal	40	0.42	(b)	с	24
57	62 01h	$\frac{68}{7}$ (p 2p)	Nat 7n	200	0 004	2(-)	G	25
′′Cu	02.0111	ZH (P,2P)	Nat. 21	200	0.004 per m	2(a) g/cm		25
		70 ⁷ Zn (p,0)			0.003 per m	3(a) g/cm	М	25
52 Zn	9.13h	⁶³ Cu (p,2n)	Nat. Cu	26	3	(b)	м	26
53	38.lm	63 Cu (p,n)	Nat. Cu	15	125	(a)	М	27
Zn		67	67		100	(4)	**	2,
Ga	3.24d	Zn (p,n)	Zn enriche foil	d 16 - 6	3.75	(b)	C	28
			"	18 - 6	4.18	(b)	С	28
				20 - 6	4.54	(b)	С	28
			u	18 - 6	40.0	(a)	C for 10h bombardment	28
			u	20 - 6	43.4	(a)		28
		68 _{Zn (p,2n)}	68 Zn foil	26 - 15	4.79	(b)	С	28
			"	28 - 15	5 61	(h)	C	28
				30 - 15	6 28	(b)	C	20
				50 15	0.20	()		20
	:		u	26 - 15	45.8	(a)	C for 10h bombardment	28
		1	•	28 - 15	53.7	(a)		28
	1	1	•	30 - 15	60.1	(a)		28
		Zn (p,xn)	Natural Zn	26 - 15	0.86	(b)	с	28
				28 - 15	1.03	(b)	с	28
				30 - 15	1.18	(b)	с	28
68	68.lm	Produced fr	om a Ge - Gen	erator				
68 Ge	287d	Ge (p,pxn)	99.9%	64 - 28	0.048	(b)	М	29

Т	A	в	L	Е	I	(cont'	d)	ļ

Isotope	T	Reaction	Target Material	Bombarding Energy (MeV) IN - OUT	Produ Yid (a) - md (b) - md	uction eld Ci/µA Ci/µAh	Remarks	Ref.
		⁶⁹ Ga (p,2n)	Ga ₄ Ni Alloy (80% Ga)	19.5	0.0092 0.013	(b) (b)	M C	30
75 _{Br}	1.7h	⁷⁵ As (³ He,3n)	Cu ₃ As Alloy (As - 31% Cu - 69%)	36 - 25 optimum energy range	1.5	(b)	м	31
					8.0	(b)	С	32
					7.5	(b)	С	12
		76 Se (p,2n)	76 Se (96.5%)	24 - 21.5	32.5	(b)	с	33
			H	30 - 22 optimum energy range	100	(b)	С	12
			76 Se (92.4%)	28 - 22	118	(b)	М	33
	:		Cu ₂ ⁷⁶ Se (92.	4%) "	43	(b)	М	33
		Br(d,xn) ⁷⁵ Kr - ⁷⁵ Br	Na Br	90 - 68	0.21	(a)	M 8.5m irrad iation, ch processing growing-in	- emical , 8m time
76 Br	16.1h	75 3 As (He,2n)	Cu As	18 - 10	0.30	(b)	M	12
		u	3 As	30	0.7	(b)	М	. 33
		⁷⁶ Se (p,n)	76 Se(96.5%)	10	1	(b)	М	12
			11	16 - 10	8	(b)	М	12
		⁷⁷ Se (p,2n)	77 Se (92.4%) in Na-Selenat	25 - 16 e	7.0	(b)	м	12
77 Br	57.0h	⁷⁵ As (q,2n)	Cu, As Alloy	28 - 14	0.09	(b)	М	31
			(As - 31% Cu - 69%)	n .	0.13	(b)	С	31
			As 0		0.49	(b)	М	33
				28 - 21	0.162	(b)	М	33
		//Se (p,n)	Se enriched	10	Ca. 0.2	(b)	С	12
		н	ч	16	1.5	(b)	С	12
	1	*	" (94.4%) 12	0.51	(b)	М	33
	1	" 70	" (98.6%) 26	0.97	(b)	М	33
		'Se (p,2n)	'Se enriched	16	0.2	(b)	С	12
			Cu_2^{78} Se	25 - 20	4.32	(b)	м	33
77 _{Kr}	l.2h	⁷⁶ Se (³ He,2n)	76 Se (96.9% enrich	25 - 15 ed)	7.5	(b)	С	34
			"	36 - 15	11.34	(b)	с	34
		⁷⁷ Se (³ He,3n)	77 Se (94.4%)	36 - 15	11.5	(b)	с	34
		u	u	36 - 22	4	(b)	М	35
		Se (³ He,xn)	Nat. Se	36 - 15	1.56	(b)	М	34
		⁷⁹ Be (p,3n)	Na Br (Nat. Br)	45 - 32	62.8	(b)	С	36
1		81 Br (p,5n)						

т	Α	в	L	Е	I	(cont'd)
_						

			Target	Bombarding Energy (MeV)	Produc Yiel (a) - mC	tion d i/µA		
Isotope	T 12	Reaction	Material	IN - OUT	(b) - mC	i∕µAh	Remarks	Ref.
/ Kr	35h	^{/9} Br (p,n) +	Na Br (Nat. Br)	45 - 0	14.9	(b)	с	36
		81 Br (p,3n)					; ;	
81 _{Rb}	4.7h	Kr (p,xn)	Natural Kr gas	20	0.8	(b)	с	37
		п	•	26	1.0	(b)	С	37
82m Rb	6.4h	Kr (p,xn)	Nat. Kr gas	20	0.7	(b)	с	37
		I	n	26	0.85	(b)	С	37
87 87	80h	⁸⁸ Sr (p,2n)	Sr metal	22 - 0	2.34	(b)	M (E.O.B. + 50h)	38
		u	u	26 - 20	2.74	(b)	M (E.O.B. + 30h)	38
		u	Sr Cl ₂	26 - 20	0.7	(b)	M (E.O.B. + 30h)	38
		Sr (d,xn)	Sr metal	22 - 0	0.51	(b)	M (E.O.B. + 50h)	38
92 Tc	4.4m	92 Mo (p,n)	92 Mo - oxide	15	0.075	(a)	M.S.B.	39
			(99.4% enriched)		per mg/c	2 m		
97 Ru	2.88d	103 _{Rh} (p,xn)	Rh metal	67.5 - 37	1.36	(b)	м	40
101m _{Rh}	4.3d	103 _{Rh(p,3n)} 101 _ ^{101m} Rh	Pd "	67 - 15	4.7	(b)	M (E.O.B. + 32.7h)	41
		103 _{Rh} (p,p2n)	n	67 - 15	5.4	(b)	м	41
^{lllg} In	2.83d	109 Ag (0,2n)	Nat. Ag	30	100	(b)	м	42
+			:	40	300	(b)	м	42
lllm In	7.73m		1	50	500	(b)	м	42
117m Sn	14.0d	116 Cd (0,3n)	¹¹⁶ Cd (97%)	50 - 20	0.17	(b)	с	43
		ll5 In (@,pn+d)	Nat. In	45 - 20	0.009	(b)	с	43
¹²² Xe	20.1h	¹²⁷ I (p,6n)	NaI (3.8g/cm ²)	67.5 - 45.8	5.6	(b)	м	44,45
122 _I		Produced from a	122 Xe generato	r				
123 _I	13.2h	123 Te (p.p.)	123 Te enriched	10	0.1	(5)	C	12
		"	"	16	3.5	(b)	c	12
		¹²⁴ Te (p,2n)	¹²⁴ Te (99.97%)	22.4 - 20	6	(b)	с	46
			¹²⁴ Te 0	22 4 - 20	4	(5)	м	47
		;	(99.97% enriched Te)	22.7 20		(5)		· · /
		¹²² Te (d,n)	122 Te (96.5% enriched Te)	8	Ca. 0.2	(b)	С	<u>1</u> 2
	-		н`	12.7 - 6	0.5	(b)	м	46
			n	14 - 8	1.7	(b)	с	46

TABLE I (cont'd)

Isotope	T ¹ 2	Reaction	Target Material	Bombarding Energy (MeV) IN - OUT	Production Yield (a) - mCi/µA (b) - mCi/µA	n Remarks	Ref.
		¹²⁴ xe (p,2n) ¹²³ Cs - ¹²³ xe - ¹²³ I	¹²⁴ Xe gas (99.9%)	16	Ca. 0.2 ()	5) C	12
		+ 124 Xe (p,pn) ¹²³ Xe		27 - 25	4.2 (b)	с	12
		- ¹²³ I ¹²⁷ I(p,5n) ¹²³ Xe - ¹²³ I	NaI (Nat. I)	65 - 50	15 (b)	M (E.O.B. + 30h)	12
¹²³ Xe	2.08h	127 I (p,5n)	NaI	67.5 - 45.8	197 (b)	М	44,45
¹²⁸ Ba	2.42d	¹³³ Cs (p,6n)	CsCl disc 2	67 - 54	3 (b)	М	48
¹²⁸ Cs	3.6m	Produced fro	(2.3g/cm ⁻) 128 om Ba	(optimum range	>)		
195m _{Hg}	41. 3h	197 Au (p,3n)	Au (1 mm) 32	5.4 (b)	м	49
		u	Au	34 - 26	4.6 (b)	М	50
201 _{Pb}	9.4h	²⁰³ Tl (p,3n)	203 Tl (97% enriche	30 d)	16.9 (b)	М	51
201 _{T1}	3.06d	Produced fro	201 pm Pb				
211 _{At}	7.21h	209 _{Bi (q,2n)}	Bi-metal (99.9% pure)	27.7 - 22	4.37 (a)	M.S.B.	52
237 Pu	46d	237 _{Np} (d,2n)	237 Np-oxide	15	0.0004 (b)	С	53
		n I	"	25	0.0013 (b)	· C	53

TABLE I (cont'e

References

 M. A. Chaudhri. Eighth Int. Conf. Cyclotrons and their Applications. IEEE Trans. Nucl. Sci., <u>NS-26</u> (1979) 2281-2286

- M. A. Chaudhri. Ninth Int. Conf. Cyclotrons and their Applications. Ed. G. Gendreau, Les Editions de Physique, France (1982) p. 683-692.
- J. Sambre, C. Vandecasteele, P. Goethals, N.A. Rabi, D. Van Haver and G. Slegers. Int. J. Appl. Radiat. Isot. (JAR1). <u>36</u> (1985) 275-278
- 4. J. H. Chasko and J. R. Thayer. JAR1. 32 (1981) 645-649.
- 5. M. R. Kilbourne and M. J. Welch. J. Nucl. Med. 24 (1983) P120.
- 6. G. D. Hutchins, M. E. Daube, R. J. Nickles. J. Nucl. Med. 23 (1982) P107-P108.
- 7. G. D. Robinson Jr., S. C. Jones, G. Muehllehner and E. F. McIntyre. JAR1. 36 (1985) 425-428
- 8. T. J. Ruth. JAR1. 36 (1985) 107-110.
- 9. E. J. Knust, H. J. Machulla and W. Roden. JAR1. <u>37</u> (1986) 853-856.
- R. J. Nickles, R. D. Hichwa, M. E. Daube, G. D. Hutchins and D. D. Congdon. JAR1 <u>34</u> (1983) 625-629.
- 11. M. C. Kilbourn, J. T. Hood and M. J. Welch. JAR1. 35 (1984) 599-602.
- 12. S. M. Qaim. JAR1. 37 (1986) 803-810.
- 13. B. W. Wieland and A. P. Wolf. J. Nucl. Med. 24 (1983) p122.
- 14. M. Vogt, I. Huszar, M. Argentini, H. Oehinger and R. Weinreich. JAR1. <u>37</u> (1986) 448-449.

Proceedings of the Eleventh International Conference on Cyclotrons and their Applications, Tokyo, Japan

REFERENCES (cont'd)

- O. T. Dejesus, J. A. Martin, N. J. Yasillo, S. J. Gatley and M. D. Cooper. JAR1. 37 (1986) 397-401.
- 16. V. Casella, T. Ido, A. P. Wolf, J. S. Fowler, R. R. MacGregor and T. J. Ruth. J. Nucl. Med. 21 (1980) 750-757.
- 17. R. Chirakal, G. Firnau, G. J. Schrobilgen, J. McKay and E. S. Garnett. JAR1. <u>35</u> (1984) 401-404.
- L. F. Mausner, T. Prach, T. Ku and P. Richards. J. Nucl. Med. <u>25</u> (1985) p120.
- S. M. Qaim, H. Ollig and G. Blessing. JAR1. 33 (1982) 271-275.
- D. N. Abrams, E. E. Knaus, L. I. Wiebe, F. Helus and W. Maier-Borst. JAR1. <u>35</u> (1984) 1045-1048.
- 21. R. S. Tilbury, W. G. Myers, R. Chandra, J. R. Dahl and R. Lee. J. Nucl. Med. <u>21</u> (1980) 867-871.
- M. E. Daube, M. C. Besozzi and R. J. Nickles. J. Nucl. Med. <u>23</u> (1982) p9.
- H. Sharma, J. Zweit, A. M. Smith and S. Downey. JAR1. <u>37</u> (1986) 105-109.
- 24. P. C. Johnson, M. C. Lagunas-Solar and M. J. Avila. JAR1. <u>35</u> (1984) 371-376.
- S. Mirzadeh, L. F. Mausner and S. C. Srivastava. JAR1. <u>37</u> (1986) 29-36.
- N. Ueda, S. Nakamoto, Y. Tanaka, M. Hazue, Y. Fujibayashi and A. Yokoyama. J. Nucl. Med. <u>24</u> (1983) p124.
- R. E. Bigler, J. R. Dahl, L. S. Rothman and P. B. Zanzonico.
 J. Labelled Comp. and Radiopharmaceuticals. <u>19</u> (1982) 1429-1430.
- 28. F. E. Little and M. Lagunas-Solar. JAR1. 34 (1983) 631-637.
- 29. T. Horiguchi, H. Kumahora, H. Inoue and Y. Yoshizawa. JAR1. 34 (1983) 1531-1535.
- 30. C. Loc'h, B. Maziere, D. Comar and R. Knipper. JAR1. 33 (1982) 267-270.
- 31. G. Blessing, R. Weinreich, S. M. Qaim and G. Stoecklin. JAR1. 33 (1982) 333-339.
- 32. S. M. Qaim and R. Weinreich. JAR1. 32 (1981) 823-827.
- 33. B. Maziere and C. Loc'h. JAR1. 37 (1986) 703-713.
- 34. H. Youfeng, S. M. Qaim and G. Stoecklin. JAR1. 33 (1982) 13-19.
- 35. K. Suzuki, G. Blessing, S. M. Qaim and G. Stoecklin. JAR1. 33 (1982) 1445-1448.
- 36. R. Weinreich and J. Knieper. JAR1. 34 (1983) 1335-1338.
- 37. J. J. L. Mulders. JAR1. 35 (1984) 475-480.
- 38. A. G. M. Janssen, R. A. M. Claessens, R. L. P. Van den Bosch. JAR1. <u>37</u> (1986) 297-303.
- 39. R. M. Lambrecht and S. M. Montner. J. Labelled Comp. and Radiopharmaceuticals. <u>19</u> (1982) 1434-1435.
- 40. M. C. Lagunas-Solar, M. J. Avila, N. J. Navarro and P. C. Johnson. JAR1. <u>34</u> (1983) 915-922.
- 41. M. C. Lagunas-Solar, M. J. Avila and P. C. Johnson. JAR1. <u>35</u> (1984) 743-748.
- 42. C. Wasilevsky, M. De La Vega Vedoya and S. N. Nassiff. JAR1. <u>37</u> (1986) 319-322.

REFERENCES	(cont'd)
------------	---------	---

- 43. S. M. Qaim and H. Doehler. JAR1. 35 (1984) 645-650.
- 44. M. C. Lagunas-Solar, O. F. Carvacho, Bo-li Liu, Y. Jin and Z. X. Sun. JAR1. <u>37</u> (1986) 823-833.
- 45. M. C. Lagunas-Solar, O. F. Carvacho, L. J. Harris and C. A. Mathis. JAR1. <u>37</u> (1986) 835-842.
- 46. J. H. Zaidi, S. M. Qaim and G. Stoecklin. JAR1. 34 (1983) 1425-1430.
- 47. H. Michael, H. Rosezin, H. Apelt, G. Blessing, J. Knieper and S. M. Qaim. JAR1. <u>32</u> (1981) 581-587.
- 48. M. C. Lagunas-Solar, F. Little and H. A. Moore Jr. JAR1. 33 (1982) 619-628.
- 49. G. Birhaye, M. Guillaume, N. Lavi and M. Cogneau. J. Nucl. Med. <u>23</u> (1982) 1114-1120.
- R. Bett, J. G. Cuninghame, H. E. Sims, H. H. Willis, D. S. Dymond, W. Flatman,
 D. L. Stone and A. T. Elliott. J. Labelled Comp. and Radiopharmaceuticals. <u>19</u> (1982) 1444-1446.
- 51. A. B. Malinin, M. D. Kozlova, A. E. Sevastyanova, V. T. Kharlamov, G. P. Chursin, V. L. Kochetkov, V. T. Gladun, G. N. Chumikov, N. N. Krasnov, N. A. Konyakhin, V. M. Kulygin and M. A. Abdukayumov. JAR1. <u>35</u> (1984) 685-687.
- 52. R. M. Lambrecht and S. Mirzadeh. JAR1. 36 (1985) 443-450.
- 53. S. Baba, K. Hata, M. Izumo, R. Motoki and T. Sekine. JAR1. <u>36</u> (1985) 564-565.