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ABSTRACT

It 1is necessary to gelt eigensolutions of Maxwell’s
equations in order to design resonators for accelera-
tors. The numerical computation of the solution, howe—
ver, is very difficult especially in the arbitrary
three-dimensional case. We have developed special fi—
nite element models with "exotic" nodal configurations
for two and three dimensional elements. In these mo-
dels, tangential component of electric field at each
side of each element is taken as unknown variable and
is constant on the side and continuous along the
interelement boundaries. In this paper some mixed
finite element models are presented with numerical
results for two and three dimensional problems.
Satisfactory results are obtained for simple problems.

1. INTRODUCTION

In the design of accelerators, resonator design is
one of the most important part and it is necessary to
calculate electromagnetic fields in cavities. In the
design of cyclotron resonators, we usually use trans-
mission line approximation which is basically one dime—
nsional approximation and is inappropriate to get field
distribution along dee gap. With the progress of compu—
ters, many numerical calculation codes have been deve-
loped to get rt characteristics of resonators. Most of
these treat resonators of constant cross section or axi

symmetric modesl. Recently Weiland has developed a
three dimensional calculation code which is based on
the finite difference method and uses only rectangular

parallelepiped control volumesz. We have developed a
true three dimensional calculation code which is based
on the finite element method. In this model, we can use
a rectangular parallelepiped element but also a
trigonal prism element and a tetrahedral element. Then
it is easier to apply to resonators of arbitrary shape
and also to impose boundary conditions. In this paper
we present the model and some calculation examples.

2. BASIC EQUATIONS
We deal with a time-harmonic electric field in
vacuum of bounded region surrounded by a perfect
conductor. It is described by Maxwell’s equations which
are reduced to

div E = 0, (@D)]
rot rot E = AE, (2)

where A = wz/cz.

Boundary condition is

nXE = 0 on the surface, (3)
where n is a unit vector normal to the surface.
In eq.(2),

for Ax0 div E = 1/A div( rot rot E ) = 0,
A=0 rot E = 0 but not div E = 0.
We must treat an eigenvalue problem for a real
vector-valued function. A difficulty of this problem is
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in dealing with divergence-free condition (1).

3. NEW TYPE OF FINITE ELEMENT MODELS

We have already tested a penalty methodj. The met—
hod was successful for very simple shape resonators,
but not fully successful for complex shape. We propose
here new types of finite element models which satisfies
divergence free condition (1). These models have quite
different node configurations from usual finite element
ones because unknown variables are taken not on nodal
points but on the sides of the element. We call this
models as exotic models. These types of finite element

4 .
models are not so new , and it can be seen as the

extension of the Weiland’s modeld.

Detailed formulation of this model is presented in
ref.5 and here we only summarize the results. In that
paper weak formulations for Maxwell’s equations are
presented which are based on the mixed and penalty
methods. Mixed formulation is based on the lagrange
multiplier.

Characteristics of this model are as follows;

(1) Tangential components of the electric field on the
sides of the element are adopted as unknown variables,
which are constant on the sides.

(2) Divergence—free condition is fully satisfied in
each element.

(3) Electric field is not strictly continuous, but
only tangential component 1is continuous along the
interelement boundaries.

(4) The handling of boundary condition is easy.

(5) Only five types of elements are in practical use.
In Fig. 1, five types of mixed finite element

models with exotic nodal configurations are shown. In
these elements, triangular element for two dimensional

and axisymmetric case and tetrahedral element for three
dimensional case are important for practical use.

—— : SIDES
NODES | -

o : VERTICES

<-2-DIMENSIONAL— —~—3-DIMENSIONAL———

Fig. 1. Types of exotic element models.

Only these five types can be used for our new types
of finite element models.

Upper and lower rows show the sides and nodes of the
elements, respectively.
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L. Triangular element

In finite element model of two dimensional case, we
take the following approximation of E in an element:
(1) linear polynomial approximation.

(2) rot E = constant.

(3) div E = 0.

(4) Tangential component is constant on each
the element.

side of

Electric field E = (E%’Ey)’ in this element, is

written as

Hx @y t AnYs
F,y I
In these eqns., the coefticient of y in HX and that

of x in Ey have the same absolute value and opposite

aigns which comes from above condition (4).

JE JE
Then rot E= —'- — = -202.
dx ay
aEx aEy
and div E = —" ¢ =—==10
ax ay
In this element model, shape funclions are given as
follows:
3 = l'y y‘)
By ® 3 By g 8y
B 2A O
3 ]j(x~xj)
B, = & N T
GO ey
where s indicates side of i+3  in Fig. 2, and Si

indicates the sign of 1 side length. -

Triangular element
Figures | to 3 indicate
nodal points and 4 to 6
indicate sides. Tangential
5 component of electric field
4 on each side is constant on
it and continuous but normal
component is not continuous
at the interface of
elements.

3 Fig, 2.

6

From this expressions, element stiffness matrix Ms and
element mass matrix Mm are

Mg = LA LSS ],

Mo 1/aA°(s S 141 JLGex ) (6% )

N
+(Y"'Y-1)(Y"YJ)} dxdy

o Y
1)
X, K KK X
2 3 371

T T
Y Yy tYy Yo tYa ¥y 3} 1s

} s Ok T
= l/A[bileiIJ{xi xJ

5 X
~l/6(x1 Xy

where A is the area of the element, li is the length of

side of i+3, Si is the sign of the side length, and xl*

T X TRy with x,, being the center of gravity.

M
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2. Telrahedral Element

Regions of arbitrary threce dimensional shapes can
be divided into tetrahedral elements with quite good
approximation. In the same manner as two dimensional
triangular element, the following conditions are
required to this finite element model.

(1) linear polynomial approximation.

(2) rot E = constant.

(3) div E = 0.

(4) Tangenlial components are constant on each
the element.

side of

Electric field E = (E_,E ,E ), in this element is
written as G
By aptagyt agz,
Ey = ay aox toagz
EZ T a7 oagX agy
JE JE
Then (rot E)X = —F- = -20:5 8
3y dz
JE OEZ
(rot B) = —*- —#= 2a3 "
y dz ax
JE aEx
(rot ) = —- —*= 24,
z 2
ax ay
JE JE JE
divE=—"+ —+ —F=9

ax dy dz

Shape functions in this model are written as
6
hx:l/(bV)f‘ii[(zk(l)uzm(l))y+(ym(l)“yk(l))z
+(yk(.L>zm(i)~ym(i)zk(i)]Eisi .

6
E =1/(6V) 3
o /(6V) %.

e (xk(i) xm(i))z»(zm(i)—zk(i))x

i
+(z) ()z (1)-z (1)x (1)]ES,

6
E_=1/(6V) F::ii[(yk(i)-_y"'(i) yxt(x (1)-% (1))y
+xy (D)y (D)% (Dy, (D) ]ES,

where V is the volume, li is the side length of i side,

E.1 is the 1 side component of electric field and Si is

the sign ot 1 side length. As shown in Fig. 3, i side
indicates the circled i+4 side. Summation i indicates
the i+4 side and m and k in that case are shown in Tab.
1.

Table 1
i k m
1® 3 4
2® 4 2
1 3@ 2 3
4@ 1 4
5@ 3 1
6@ 1 2

Fig. 3. Tetrahedral Element

Nodal points are indicated with 1 to 4. Sides are
indicated with 5 to 10 in circle. Tangential components
on each side are constant and electric field at an
arbitrary point in the element is expressed with the
linear contribution of the tangential components of all
sides.
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The element stiffness and mass matrices for
tetrahedral case are also given through the same
procedure as the case of two dimensional, but the

explicit expression is very complicate to write down.

4.ASSEMBLAGE AND BOUNDARY CONDITIONS

From the
given. Then

above procedure, element matrices are
according to the usual finite element
procedure, all the element matrices are assembled to
total mass and stiffness matrices of the total matrix
equation.

Boundary conditions are imposed to the
matrices. For a metal surface,
electric field are zero.

assembled
tangential components of
So the corresponding row and
column are eliminated. For a mirror symmetric plane, no
special constrainl conditions need be imposed since
this case may be treated as natural boundary
condilions.

In this way, we can get the matrix equation and we
must solve the generalized eigenvalue equation. These
total matrices have many zero components and are usual
ly very sparse. So usually some techniques are used to

save computer memory. In this time we wused skyline
scheme for the Gauss elemination methodb.
5.NUMERICAL RESULTS

We made some calculations for several simple
problems to check the validity of our approach.
1.Two dimensional problem

We calculated the field in a rectangular domain
with a notch of depth a. Figure 4(a) shows two types of
meshes. We calculated the lowest eigenvalue using
triangular element. Using symmetric properties of the
fields, only an upper half area is divided and

calculated. Notch dependence(a) of the lowest eigenva-
lue is shown in Fig. 4(b) for 10X 10B meshes. 1In this
figure solid line indicates the results obtained with

the conventional methodl. The calculated eigenvalues
show good agreement with conventional method and the

eigenvalue dependence on a is consistent with the
perturbation theory. Figure 4(c¢) shows the field
3.0
2x2A 2x28 2
|
}e—d
1.0 20
1.0
5x5A 5x58 '8
o : EXOTIC (10x108)
o — : CONVENTIONAL (14 x148)
04 06 08 10 12 14 16 1.8
—a
a
(@) )
Fig. 4(a). two dimensional mesh.
Fig. 4(b). calculated eigenvalue.
Notch depth dependence on eigenvalue is shown. The
results show good agreement with the calculation with

conventional finite element model.
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10x10A

Ce) (d)
Fig. 4(c). Electric fields calculated at the center of
mass of each triangular element.
Fig. 4(d) Electric fields in two triangular elements at
the edge indicated by the circle in Fig.4(c).
In these figures, eigenvalue and eigenveclors are cal-
culated on the sides of elements, and from these values
electric fields at arbilrary points are calculated.

calculated at the center of mass of each
element. 1n Fig. 4(d), the ficld in two
elements at the edge are shown. Bars
indicates the magnitude and direction of electric
fields. Electric fields at element interfaces have
different values which depends on the element. 1In this
model, only tangential components are continuous. By
the same reason, the exact electric fields should have
no normal component on the symmetry plane, but the
calculated ones have small amount as il This kind
of errors are inherent in this method.

distribution
triangular
triangular

15.

2. Three dimensional pro

First we calculated a simple parallelepiped cavily.

Obtained results were quite reasonable. Figure 5 shows
the convergence of eigenvalue for 3IX4AX5H size
parallelepiped cavity. Division of more than 4x4Xx4

gives sufflicient convergence for the eigenvalue in Lhis
case.

CONVERGENCE OF EIGENVALUE

analytical value
10116 O T—
1.01 °
o
w
=)
-l
<
Z 100}
w
g
w
3
0.99
% 5
y
1 2 3 4 5 6 7
DIVISION
Fig. 5. Convergence of eigenvalue with division N.
For such a simple parallelpiped cavity, convergence

is very fast.
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we calculated a deformed parallelepiped
cavity. Figure 6 shows the lowest eigenvalues with
deformat.ion X This variation of the eigenvalue
consisls with the perturbation theory. That 1is, when
the volume where electric field is strong is reduced,
eigenvalue should be reduced. Calculated electric field
Fig. 7 by vector plots.

Secondly,

is shown in

VARIATION OF EIGENVALUE
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Fig. 6. Variation of eigenvalue against deformation
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Fig. 7. Electric field
distribution for deformed
parallelpiped cavity.
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It is well known that in three dimensional calcula-
tions large size of computer memory is required. We

Figure 8 shows the

have estimated the required size.
This figure

required memory size vs division number N.

shows that the required memory has N5 dependence. It is
because the skyline scheme is adopted for the solver.
When the division is N, the order of matrix is nearly

proportional to Nd. In the skyline scheme, bandwidth is

nearly proportional to Nz. So required memory size is

approximately proportional to N5. According to our mesh
generator program, maximum nonzero components of one
column or row, is expected to be 19 considering the
symmetry of the matrix. So the minimum size of memory

to store the matrix is about lSXNd, which line is also
indicated in this figure. At present we are developing

a computer code based on some iteration methods which
can take advantage of this slorage property.
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Fig. 8. Required memory vs division N.
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