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Abstract

Programs using second order transfer matrices
have been in use for many years in both beamline and
synchrotron calculations, but the writers of cyclotron
oriented codes have tended to find first order

equations sufficient1’Z The small magnet gap and tight
spiral of the MSU superconducting cyclotrons make the
second order effects significantly larger than in
conventional machines, so it was deemed that second
order matrices would be necessary to obtain reasonable
accuracy. The program SOMA, (Second Order Matrix
Approximation), has been written to check the validity
of this assumption. The agreement between SOMA and
orbit integration routines is discussed in the context
of a realistic magnetic field for the K500 cyclotron.
Also presented is a technique for treating accelerating
gaps which have a generalized spiral shape.

Introduction

For many years computer programs for the design
of charged particle transport systems have made use of
a matrix algebra formalism. The procedure is based on
the fact that to first order the final conditions may
be expressed as simple integrals of a few particular
first order trajectories (matrix elements)
characterizing a system. In these codes; beamline
elements are represented by idealized components for
which the trajectories were derived analytically. The
programs then compute a transfer matrix for the whole
system by multiplying together the transfer matrices
for each of the elements in the system. In a procedure

described by K. Brown3, this technique was generalized
to include second order effects in the very successful
program "TRANSPORT". The extension to cyclotrons is
complicated by the fact that the beam path does not
consist of a set of discrete single function elements,
but rather a single, very complex magnetic field, which
varies as a function of radius and therefore as a
function of energy. The well known solution to this was
to compute a set of trajectories around a closed
(equilibrium) orbit for a set of energies spanning the
range of the cyclotron. Then the initial conditions are
multiplied by the appropriate matrix to determine the
orbit parameters at the first accelerating gap. At the
gap a delta function model is used to evaluate the
energy gain of the particle. The conditions at this gap
can then be multiplied by the appropriate matrix to
determine the conditions at the next gap, and so on.
The actual matrix coefficients used are determined by
interpolating between the values that were stored for
the discrete set of energies.

Theory

Let the displacement of a particle from its
equilibrium orbit at a given angle, 6, be;
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where r and pr are the radial coordinates of the

particle and 1t is the time. SOMA assumes that the
particle motion can be expressed as a second order
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Taylor expansion of the initial conditions~. Thus the
values of the displacements at an azimuth 6, are;
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where the linear transfer matrices are X and Z , and
the second order transfer matrices are A, D and E. The

vectors V_(6) and V_(6) are,
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The first order transfer matrices are obtained by
integrating a set of linearized equations along the EO
for two sets of initial conditions. Using the x motion
as an example,
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x1(ei)=1, pxl(ei)=o’ X2(91)=O’ and px(ei)=1.

After the differential equations of motions are
expanded to second order in the displacements from the
EO, they can be written in the following form;
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where the matrices a, B and Y can be obtained from an
expansion of Hamilton's equations. The expansions for
the displacements found in equations (2) are
substituted into the differential equations (3), and
terms up to second order in the displacements are
retained. Collecting the coefficients of the initial
values of the displacements leads to a differential

equation for each expansion coefficient. These
equations show a very systematic pattern;
d d
= = = = 4
ds X K(8) X a6 Z L(6) Z ()
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where the f's are functions of the first order
coefficients (the elements of X) and the elements of o.
The same is true for the g's and the h's. Inspection of
equation (5) shows that it is very similar in form to
equation (4) except for the presence of the driving
term (Fn or Gn). Since the driving terms are only

functions of the first order expansion coefficients,
the solutions to equations (5) can be found using a
Green's function. For example;

0
= ( 1 1 1
An(e) " Fn(e ) A(B,0') do' ,
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where the Green's function A is ,

AC8,8') = X(8) X ' (8")

Crossing the Acceleration Gaps

In the superconducting cyclotrons at MSU the
accelerating gaps are of a spiral shape and so the gap
position is a function of radius. When the equations of
the matrix elements are integrated along the
equilibrium orbit they start and stop on radial lines
that pass through the point where the EO crosses the
gap. The result of this is that when the displaced rays
are transferred up to the gap, the values for the
displacements (x,pX etc.) are the values along a radial

line. In order to compute the effects of the
aceceleration correctly, the values of r, pr and 1 are

needed at the point the displaced orbit crosses the
gap. Since the values of the orbit at this point are
not known, they must be estimated. The angle of the gap
eg(r) is input as a table of 6 values and the program

uses a double three point Lagrangian interpolation to
find the first and second order derivatives;

d a2

1 and ar? eg =0,
The difficulty arises because as the angle of the gap
location is corrected for the displacement from the EO,

the value of the displacement changes. It can be shown5
that the correction, 86, to the gap position and ér to
the radius are;
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where the prime means differentiation with respect to
0, the zero subscript indicates the EO value, and the
subscript '1' refers to the first order component. The
procedure for calculating the changes introduced in
each of the other coordinates by 66 follow the same
method. If q is any coordinate then,

q > q *48q,

where 8q = (qé + q{) §6 + % qg 692.

Once the values of R,pr and 1 are known on the gap the

effect of the RF voltage can be computed.
The computation of the acceleration process uses a
delta function model for the energy gain, and is

identical to that used by SPRGAPZ6. Before proceeding
to perform the transfer up to the next gap, the values
of the displacements on a radial line are again
required. Since the energy has changed, and thus the EO
has changed, the above process must be repeated. Once
this correction is made everything is set to make the
transfer to the next gap.

Program Algorithms

SOMA 1is designed to operate as a self contained
unit with the exception of the magnetic field grid
which must be produced by a separate program. At the
beginning of each run the program either computes the
transfer matrix elements or reads them in from a binary
file produced during a previous run. If the matrices
are to be computed then the magnetic field and gap
table are read in. Then the program searches for
equilibrium orbits using the procedure of Gordon and

Welton7 , for a set of specified energies. After each
EO is found a search is made for the points at which
the EO crosses the gaps, and when found the values of
F,Dr and 6 at these points are stored. A separate

routine is then used to integrate the equations for the
matrix elements along the EO from one gap location to
the next. The integration technique is again a standard

Runge—Kutta8 In the input stream it can be specified
if only first order elements or both first order and
second order elements are to be collected. The input
can also specify up to 10 fixed angles at which the
transfer matrix coefficients will be stored. Currently
the fixed angles must fall on a standard Runge-Kutta
step. After this procedure is repeated for all the
selected energies, and if the main probe option is
selected, then a probe transfer matrix is computed for
each energy by integrating from last gap up to the
track location, (which has been input as a table of r,®
values). Finally all the transfer matrices are stored
on binary files.

Once SOMA has an appropriate set of transfer
matrices, it then reads in the parameters common to all
particles. This includes the dee voltage, the locations
of slits and probes, and the set of transfer equations
required. The next step is computing the starting
conditions for all the particles (up to 1,000 may be
run) and storing them. Particles are then run one at a
time, each being run until it reaches a turn limit, an
energy limit, or a radius limit, whichever comes first.

At each gap a test is performed to determine if
any requested fixed angles fall between the current gap
and the next gap. If a fixed angle is found then the
particle parameters (x,px,z,pz,r,r,pr) are computed for

that angle and stored. After all the fixed angles found
have been computed, the program proceeds to compute the
transfer to the next gap. At the gap, the parameters
(E,x,px,z,pz,T) are updated and the process repeats

itself as often as necessary. It should be noted that
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the computations for the fixed angles in no way affect
the values at the gap.

The fixed angles can be designated as one of two
things, either a flag or a probe. The flags themselves
are divided into two groups, intercepting and non-
intercepting. At a flag if the particle lies between
the minimum and maximum values for that flag, the orbit
parameters are stored. If the flag is intercepting then
the particle is considered removed from the beam, and
the next particle is begun, otherwise the run continues
unchanged. After all the particles have been run the
program will produce scatter plots of any pairs of
the orbit coordinates, at any of the possible 20 flag
locations. A slit can be described as 2 intercepting
flags located at the same azimuth. For detailed
raytracing the particle parameters at all gaps and
azimuths (or some combination thereof) can be printed
out.

A probe consists of a differential and a main
jaw, which can have up to 3 vertical divisions or 60
phase divisions. The probe is considered to move
outward in radial steps. Upon finding the orbit
parameters at the probe azimuth the program determines
in which steps the particle would give a current
reading. The requirements for this are that the probe
location does not intercept an earlier turn of the
same particle, but does intercept the current turn. For
each bin that these requirements are met the bin count
is augmented by 1. A possible 20,000 bins are available
to be divided between the z (or ¢) bins and the radial
bins. At the end of the run the probe bin values are
written in a binary file which can then be used as
input to a plotting routine. Figure 1 shows a sample
probe plot and Fig. 2 is one of the many possible
scatter plots.

Comparison of SOMA with SPRGAPZ

The program SPRGAPZ integrates the exact median
plane equations of motion, and the linearized z motion
equations. This allows the coupling of the x motion
into the z motion, but not the z motion into the x
motion. There are three areas from which one expects to
generate differences between SOMA and SPRGAPZ. The most
obvious source is the transfer matrices themselves. As
the transfer matrix technique is an approximation of a
given order there will be contributions from the higher
order terms. In this case it is expected that the error
would be proportional to the next term in the Taylor
expansion. In Fig. 3 the differences after one turn
(without acceleration) are shown. If the expansion is
done to first order the error function goes as (5.6E-
6)f?, where the initial conditions of the particle lie
on the boundry of an ellipse with an emittance of 0.2f2
mm-mrad. At this radius, (16"), an emittance of 5 mm-
mrad corresponds to a maximum orbit center displacement
of 0.03". If the expansion is taken to second order the
the error is proportional to (1.6E-8)f?3.
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Fig. 1--A differential probe trace as computed by the
program SOMA. The differential head is 0.010", and
initial phase width was 14°, and the emittance was 1007w
mm-mrad at injection.
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There is also a difference generated by the
interpolation of the matrix elements when the orbit's
energy lies between the stored values. For a range of
different step sizes a ray was run whose energy was
exactly halfway between two stored values, (the worst
possible case). The initial condition of the ray was a
displacement of 0.003", and the results were checked
after one turn without acceleration. At 11 MeV a step
size of .2 MeV results in differences of less than a
tenth of a mil. Larger step sizes lead to much larger
errors.

The third source of differences is the gap
crossing routine. In Fig. 4 the differences after 100
turns with acceleration are shown as a function of the
initial displacement from the EO. These differences are
the sum of all three sources of error. As can been seen
in the figure the differences for both first and second
order are quadratic in the initial displacement, and at
large values a cubic term appears. The fact that the
error with the second order expansion is also quadratic
indicates that there are residual second order effects.
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Fig. 2--A scatter plot at a non-intercepting flag. In
this case the radius is plotted against the particle
phase. This type of output can be used to determine the
correct location for a slit.
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Fig. 3--The differences between SPRGAPZ and SOMA for
different initial conditions. The initial conditions
lie on the perimeter of an eigen-ellipse of area
(0.2)f? mm-mrad. The error in the first order case is
(5.6E-6)f?, and in the second order case is (1.6E-8)f?3.
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Also shown in in Fig. 4 is a comparison of a first
order transfer with first order gap crossings, and a
first order transfer with second order gap
crossings.This illustrates that the orbits are
relatively insensitive to the gap position. For the
rays of small initial emittances the error in the
energy is 5 parts in 107 (8.5 eV), which is the same
magnitude as the round-off error.
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Fig. 4--The differences between SPRGAPZ and SOMA after
100 turns with acceleration for different initial
conditions. In both first and second order cases the
error function is quadratic in f except beyond f=50
where the second order begins a sharp upward turn.
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