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Abstract 

The motion of accelerated particles is descri­
bed by a Hamilton function in which the acceleration 
is taken into account by a timedependent potential 
function. By canonical transformations four varia­
bles are defined of which one set describes energy 
and H.F.phase and the other set the radial oscilla­
tions of the particles. In the new Hamilton function 
the coupling between these two sets of variables is 
clearly demonstrated. 

Particles in a cyclotron with a homogeneous 
field and an one-Dee system and particles in a cyclo­
tron with a four-fold symmetric magnetic field and 
a two-Dee system are concidered. 

1. Introduction 

The motion of non-accelerated particles in cyclo­
trons has been described by several authors 1'2,3). 
In this paper an onset of a general analytical orbit 
theory, which also takes into account the accelera­
tion, will be presented. The purpose of this theory 
is to give a description of the influence of the 
acceleration on the beamproperties by relatively 
simple equations. With these equations a simple com­
puterprogram can be made by which a good understand­
ing of several effects can be obtained. Aside of this 
analytical approach in the near future a numerical 
integration procedure will be used to check the 
results and to acquire final data. The general orbit 
theory together with the numerical programs will be 
applied to the four-fold symmetric separated sector 
cyclotron of the Hahn-Meitner-Institut to find the 
influence of radial oscillations on the H.F.phase 
and energy of the particles 4). 

The motion of the particles in the median plane 
is described by a Hamilton function in which cartesian 
coordinates are used. After several canonical trans­
formations fastly moving parts are separated from 
slowly moving parts, which represent the wellknown 
motion of the orbitcentre. In the fastly moving parts 
energy and H.F. phase are described. Coupling terms 
between both types of motion have been found. 
A treatise of the complete motion of accelerated 
particles in polar coordinates leads to serious 
analytical problems. 

In section 2 we will discuss the theory of non­
accelerated particles and in section 3 the theory of 
accelerated particles. 

2. Non-accelerated particles 

2.1 Homogeneous field 

The Hamilton function for particles in the 
median plane, under influence of a magnetic and an 
electric field is given by: 

in which Px and Py are the canonical impulses in the 

x- and y-direction; A is the vector potential of the 
magnetic field B and V is the scalar potential of the 
electric field; m and e are mass and charge of the 
particles; t is time. 

In this section we only consider the case with 
V;B. The vector potential for a homogeneous field 
with magnetic fieldstrength Bo in the z-direction is 
represented by: 

Ax ; -BoY , Ay ; Az 
; 0 [2) 

1 2 p2 [3) so: H (Px+eBoY) + iiii 2m y 

For convenience we introduce new variables: 

Px Py 
Px ; ~ Py ; E ; wot 

m m (4) 
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y ; woY , x ; W x Wo ; ,...... 
0 m 

This yields: H ; 
,- - 2 
,ZC Px+Y) + ,-2 

,Py [5) 

The motion is split in a fastly and a slowly 
oscillating part by the canonical transformation: 

x x+Oy 
[6 ) 

Px -y 

y Py -x 

The new Hamiltonfunction then becomes: 

H 
; ,;2 , ;2 

'Px + ,x (7) 

The p ,y coordinates have disappeared from the 
Hamil~on function. They are therefore constants 
e.g,C1 resp. C2' This corresponds to the position 
of the centre of the circle~ ~escribed by the parti­
cles._The solution for the x,px-coordinates is the 
circle motion, which has the frequency 1 (fastly 
oscillating). In the old coordinates the solution is: 

x (8) 

Ro ' to' C1 , C2 are constants determined by the 
initial conditions. 

For a cylindrically symmetrical field the solu­
tion shows clearly again the fast part as given in 
equation (8). However the slow part now shows an 
oscillation with frequency vr -1, where vr is the 
radial oscillation frequency and therefore describes 
again the motion of the orbit centre. 

2.2 Azimuthally varying field 

The Hamiltonfunction for a particle in an 
azimuthally varying field Bz ; Bo(1+An cos n8) can 
be represented by: 

1 ~' 2 .. - (P
Y
-- 2 fn) 

2m n 
.0:0. (9) 

68 

, 
with f n; Ancos n8 , fn 
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f is a function of the azimuth e, which on its 
turn i~ a function of the cartesian coordinates x 
and y. After application of the transformations (4) 
and (6) the new Hamiltonfunction becomes: 

H (px- x+
2
Py f~)2 + 1 (~+y+Px f~)2,(10) 

n 2 n2 

Only the coefficients which are linear in the 
amplitude An are kept. At first sight this means 
that our treatment will only be valid for small 
values of An' However the results are consistent 
with those of the general orbit theory for non-accel­
erated particles in ref.1. As these latter results 
may be regarded to be valid fo~ An/n«1 we assume 
that the treatment, presented here, has the same 
approximation. 5) 

Expansion of the Hamilton function in y and Py 
up to second degree (leaving the bars) yields: 

H = 1 2 
~x 

2 1 (Pxpy-xYlf~ :ZPx + -2 + (11 ) n 
f' , 2 f" 2 ' , 

x ~i 1 2 _ .£.0. &X ~ 

R2 
+ ..!..Il& :ZPy Pyy 2 n2 R2 2 R2 n n 

We now want to apply a transformation which 
yields a Hamilton function in which no couplingterms, 
which are linear in y,PY' are present. Then we can 
find a solution for which y=Py=O. This solution 
represents the central orbit for one energy. The 
motion of the orbit centre is found by solving the 
equation of motion for y,Py and substituting the 
central orbit solution. 

For n>1 this transformation is given by the 
generating function G(x,px'y,Py): 

G = Pxx + pyy + ~ (xY-Pxpy)f 
n -1 (12) 

2 2 (xp +YPx)f' 
n(n-1) y 

where f=f(x,px) 
Then the real 

are given by: 
orbit coordinates (xgeom,ygeom) 

ygeom= y + -- Pxfn .. ~f~ + Px 
n2-1 n2 (n 2-1 ) 

(13 ) 
Xgeom= Py + xfn - Pxf~ + x 

n2-1 n2 (n 2-1) 

The second term at the right hand side of eq(13) 
determines the wellknown oscillation of the equili­
brium orbit around a circle. The third term at the 
right hand side ensures that the velocity of the 
particles is constant along its path. The motion of 
the orbit centre is represented by (y,Py) in the new 
Hamilton function. 

The coefficients of y2,p~ and Py yare first 
order oscillating functions for n>2 and can be trans­
formed to higher order 1). Therefore the oscillation 
frequency Vr -1 of y is of second order. 

The influence of first and second harmonic field 
pertubations is described by remaining first and 
second degree terms, which can not be transformed 
away. ~his describtion is in accordance with that in 
ref 6. Further a derivative in the mean magnetic 
field gives rise to constant coefficients (see section 
2.1 ) 

3 Accelerated particles 

3.1 Homogeneous field and one-dee system 

As an example we consider here a particle in a 
homogeneous field, accelerated by a one-dee system. 

The electrical potential for a one-dee system 
can be represented by eVoHe(y)cos wH.F.t. Vo is the 
amplitude of the acceleration voltage; for simplicity 
we take He(y) equal to a stepfunction in the y-direc­
tion (this does not limit the generality of our 
treatment); wH.F. is the frequency of the acceleration 
voltage. 

After the transformations (4) and (6) the time­
dependent Hamilton function becomes: 

(14 ) 
with: W WH.F./wparticles V = Vim 

We define new variables TI ,s by Px=~x+Po and 
x=s+x o ' Xo and Po are the solu~ion for particles 
which have zero phase and are well-centered. For this 
solution we require that the first degree terms in 
the Hamilton function vanish. Then ~x and s determine 
H.F.phase and energy of the particles. The meaning 
of xo'Po,s and ~x in the geometric coordinates is 
illustrated in fig.1a and 1b, in which a particle 
with a negative phase resp. an energy deviation,is 
given (y=py=O).The position of the particle is found 
by vectorially adding the vectors (xo,po) and (s,~x)' 

( .1 ( bl 

fig.1: Illustration of the meaning of the variables 

The Hamilton function in the new variables is: 

H = 1~2 + lc 2 + ~ (p _~o) + c(x +-Eo) + 
2 x 2S X 0 t SOt 

(15 ) 

Again for simplicity we choose w=1. By making W 
time dependent one arrives at the equations which 
describe particles in a synchro-cyclotron. 

A new function F is introduced by F(Y+~x,t)= 
He(~x+y+po)-He(po)' Because He(po) is a pure function 
of the time the stepfunction in l15) can be replaced 
by F. In fig.2 the function F(~ +y,t) is shown for a 
constant and positive value of ~he argument (~x+Y)' 

The time difference between the time of gap­
crossing of a particle on a centered orbit with zero 
H.F.phase and a particle with a non centered orbit 
and a non zero phase, is called ~t (see fig.3): 
~t is a function of y+~x and t. 
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fig.2: The function He(po),He(TIx+Y+Po) and 
li(TI +y,t) for constant TI +y; n is the 
num~er of revolutions fr5m the start 
at zero velocity. 

DUMMY DEE 

fig.3:An one-dee system. The timedifference (~t) 
of gapcrossing of a well-centered and an 
off-centered motion is shown. 

We expand F in a fourierseries with coefficients 
that are functions of t. 

F ~n~oa2n(~t)coS 2nt + n~ob2n+1(~t)sin(2n+1)t 
(16 ) 

with: ~t ~ TIx·y + 1 ~3 + 
t ~ 6 3f 312 

, p p 

pt' corresp~nds with the radius of 
accelerated orbit, p ~ 2eV/TIm 

a central 

TIx and yare small quantities. Therefore F can 
be expanded in a powerseries in TIx and y. The 
Hamilton function in eq.14 now becomes: 

H ~ lTI2+1C 2+TI (Po-~)+f,(x +dPo) , x'~ x dt a dt 
( 17) 

2eV +(TIx+Y) ---l(COS t + cos 3t + .. ) 
TIpt' 

2 1 2 
+(TIx+Y) (t sin 2t + t sin 4t + •• ) 

3 1 +(TI +y) (----3/2coS 
x 6pt 

1 
t - ---3/2cOS 3t - .. ) 

6pt 

As mentioned above xo and Po must be choosen so, 
that the first degree part in TIx and f, disappeares. 
We then find: 

Po -pt~sin t(1+1 sin 2t+ •. ) 
2t (18 ) 

The second degree part in eq.17 describes the 
behaviour of H.F.phase and energy of geometrically 
centered particles. The third degree part gives one 
resonant coupling term between radial oscillations, 
H.F.phase and energy: 

!!..:£i...2 ( ) - 312cOS t 19 
6pt 

This resonant coupling term drives the orbit 
centre along the acceleration gap and causes an 
energy decrease ~er turn in the particle energy 
proportional to y (y is the orbit displacement at 
right angles to the gap). Together with a change in 
energy also the H.F.phase varies slightly. 

3.2 Fourfold symmetric field and a two-dee system 

A cyclotron with a four fold symmetric magnetic 
field and a two-dee system is schematically drawn in 
fig.4: 

fig.4: A fourfold symmetric magnetic field and 
a two-dee system. 

The treatment for this case is similar to the 
treatment in section 3.1, though more complicated. 
Because of the complexity of the formulas and the 
limited space in this paper we will only discuss 
some results. 

The potential function is again split into two 
parts. One part is a pure time dependent function 
and can be omitted, the other part is a function 
(F) of all variables and is represented in a Fourier 
series. In fig.5 He(xo'pxo)' He(f,+py+xo,y+TIx+Pxo) 
and F~He(f,+p +xo,y+TIx+pxo)-He(xo,pxo) are given for 
the push-pus~ mode of operation. 

Now one can find the Hamilton function as a 
power expansion of the variables. The quantities 
xo'pxo'y and Pya ~hich arise after t:ansforming 
the Hami~ton functlon such that the flrst degree 
parts disappear, determine the central accelerated 
orbit. The most important terms in these quantities. 
are given in eq.20. 
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fig.5: A representation of the functions 
He(xo'po)' He(xo+~+P~,Po+TIx+Y) and 
F(~+py,TIx+y,t) as a function of time 
with constant argument TIx+Y and ~+py. 

, 
p2= 4sin mto 

Xo = pt'cos t [20) 
TI , 

Pxo= -pt'sin t 

fn p_ 4sin2asin m~ cos t 
Yo = , 

-- 0 TI n2-1 pt' 

fn represents the amplitude of the nth harmonic 
field modulation. a equals half of the angle between 
the two accelerationgaps and m is the harmonic number 
of the acceleration frequency. 

After the transformation yielding the central 
orbit coordinates given in eq. 20 a new Hamilton 
function arises in which coupling between the two. 
motions [x.Px) and [Y.Py) occurs in the third degree 
terms. At first sight the analytical calculations 
shows that the coefficients of the resonant coupling 
terms are proportional to the square of the harmonic 
number of the acceleration voltage. Further extra 
terms [due to the acceleration mechanism) in the 
quadratic part change slightly the relation between 
H.F.phase and particle energy and also the value of 
the revolution frequency of the orbit centre [v -1). 

A complete treatment of this orbit theory £ill 
be published. 
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