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CALCULATING THE DISTURBED MOTION OF PARTICLES
IN CYCLIC ACCELERATORS

by R. WiderSe, Nussbaumen, Switzerland

Abstract

A few examples demonstrate an elementary
method of calculating the closed orbit in a cy-
clical accelerator when perturbative forces are

present.

The free oscillations can be found in a

similar way, the criterion for stability being the
same as for the strong focusing synchrotron. A
steadily increasing extraction force will, how-
ever, destroy the condition necessary for reso-

nance.

In most cyclic and spiral particle acceler-
ators, the orbit is never a smooth circular or
spiral curve as determined by azimuthally constant
stabilizing forces but, in most cases, it is a
complicated path deformed by various azimuthally
distributed perturbative forces. In such cases,
the periodic disturbing forces acting on the par-
ticles can be represented as Fourier-series of
the azimuthal coordinate thus giving another
Fourier-series as the solution for the orbital
curve. Using a computer for the numerical calcu-
lations, this method is straightforward and easy,
and even non-linear forces and couplings between
radial and axial components can be considered.

The method has, however, the usual draw-back
of most computer calculations: it destroys the
direct mental connections between the acting force
and the resulting disturbance of the orbit thus
making it for instance difficult to imagine how
special forces have to be applied in order to ob-
tain certain deviations from the normal orbit.

To enlighten the relations between the ap-
plied forces and the resulting changes of the
orbit, some direct calculations of special cases
might therefore still be motivated. In the fol-
lowing calculations, we will restrict our investi-
gation to the very simple case of linear forces
acting in the orbital plane only, thus leaving out
all considerations on axial forces and disturb-
ances and also their coupling with the radial
movement of the particles. Mass and energy of the
particles will be taken as constant. As usual,
the circular orbit is replaced by a linear motion,
without of course omitting both the centrifugal
force acting on the particles, and the periodic
character of the perturbations.

If y is the deviation from the circular orbit
with the radius R, my is the mass force produced
by the deviation, and me? (1 — n)y the restraining
stabilizing force resulting from the difference
between the Lorentz-force of the guiding magnetic
field B (with the exponent n = — % %—g) and the
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centrifugal force E%i of the circular motion. The

perturbative force will be denoted by mP, it being
linearly dependent on the deviation y thus: mP =
mPo (1 + py).

The differential equation for the forces will
then be:

mf + mw® (L —n)y +mPg (1 +py) =0 (1)

resp.

- x

where w is the revolution frequency (= angular ve-
locity) of the particles, wt = x the azimuthal
angle and Pg a periodic function of the azimuth.
As usual, the movement of the particles can be de-
scribed by a superposition of the stationary solu-
tion of the equation (1a) (closed orbit, orbit of
equilibrium, enforced oscillation) and free oscil-
lations y¢ (betatron oscillations) which are solu-
tions of the differential equation (1b):

k
yg + w? [Zl —n) + Pop/wzj}yf =0 (1b)

Our first task will be to determine” the closed
orbit.

As a rirst example, we will consider a con-
stant perturbation P; only acting over the azi-
muthal angle 2x; as shown in Fig. 1. The solution
of the differential equation (la) iss

P
v = C cos,/kex — ag% (2)
with the frequency-coefficient

k=(l—n)+P§2r (28)
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The constant C is determined by the initial
conditions of the particle. As can be seen, the
orbital curve is composed of two parts which are
Jjoined together at the point y; where the pertur-
bation begins. Choosing x = 0, y = yo, and y'= O
for the initial values at the midpoint of the per-
turbation, this part of the orbit giwves us:

Py P
(y()]_ + 5?1{—1) cos Nkixg — azt (3)

Y1

and

vi=-— (yol + gf*t) iy sin Wiz (32)

Calculating the same values for the undis-
turbed part of the orbit (x = xp, k = ky) we get:

Y1 = Yoz cos Nkpxp (4)
and,
¥1 = yoz2 Vkp sin~kpxp (42)

Comparing the expression (3) with (4) and
(3a) with (4a), the unknown amplitudes of the
orbit are found to be:
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In formula (1) we have assumed the perturba-
tive force as being positive when directed inwards
from the circular undisturbed orbit (i.e. in the
same direction as the Lorentz-force) and as seen
from formula (5) and (5a), this will produce an
outward directed peak at the center of the pertur-
bation (yo; is positive) whereas the mean value
will be inside (i.e. negative) the undisturbed
orbit A-A.1

Fig., 1 clearly shows how the momentum of the
particles moving outwards is counteracted by the
inward directed positive perturbation force thus
shifting the radial welocity of the particles from
the outward to the inward direction.

We have here assumed the frequency-coeffi-
cients k; and ky; to be positive and the closed
orbit will thus be composed of two sinusoidal
parts.

If the frequency-coefficient kj is zero or
negative, the calculation is very similar; as a
result, we now get parabolic and hyperbolic parts
of the curve as indicated by the following for-
mulae (6), (6a), (7), and (7a):

P sin Vkgxo
yo1 = wzkl , -1 (5)
” l‘f" sin Nkyx; cos Nkyxy + cos Nkyxy sinvVkpXs
2
and
P sin Vkix
Yoz = — ozb- — (5a)

As a numerical example we take mP; to be 1%
of the centrifugal force mmZR, the azimuthal

1 [
sin \/k_lxl cos Vkoxp + i—i- cos NVkixy sin VNkpxp

k3 =0
length of the perturbation 2x; = 60° and k1 = kp = =~
0.5, and we then get the amplitudes: 1
: you = EAEL [5} SYSEIN. _— ] (6)
k. tg ngg
Jo1 _ 2 N
o +0.416%
Plxl 1
Yoz = — =3 (6a)
ez - —0.91% Sk, sinVigxs
with the mean value: and:
Yo1 + ¥o2 _ k3 = negative
SR —0.247%
Py sin VN koxo -1 (7)
yor = w2ky
/ —_llil sinh ¥—k;x; cos Vkoxp + cosh V—kixX; sinVkaxp
2
yoz = —E%l sioh N X (7a)
WKy
sinh N—kx; cos Nkoxp — / E—f{l cosh N~k;x; sinVkyxp
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As can be seen from Fig. 2, such values for
k; will not change the character of the closed
orbit very much.

As a second example, we will explain the cal-
culation of the stationary curve when two differ-
ent constant perturbations are acting on the par-
ticles. In Fig. 3, we have shown two perturbations
P; and P, of the same azimuthal extension x;, 120°
apart and with positive frequency-coefficients k;
and kp, whereas the undisturbed part of the cir-
cumference has the coefficient ks.

Considering the first parts of the orbit
(=210° to +110° in Fig. 3), we can calculate the
amplitudes of the oscillations by means of the
formulae (5) and (5a) to be:
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As a last example, we shall show how to apply
the perturbing forces when we want to create a
special deviation, for instance a "bump," in the
stationary orbit. As can be seen from Fig. 4, the
"pump" we want has an azimuthal extension of
2(x1 + xp) leaving the rest of the orbit without
any alteration. Again the deviation can be com-
posed of two (in this case sinusoidal) parts, one
cregated by the outward directed forces, and
another part which changes the radial velocity of
the particles thus caused by applying an inward

)3 sin Vkix
yo1 = w2il =2 -1 (8a)
/ %J- sin ¥kix; cos Vkaxs + cos Vkyx; sinNkzxs
3
and.
—P sin Vkqx
Yo3 = m{l‘ — (8p)
sin Vkix, cos Nkixs + fllz—B cos Nkyx; sin NksXs
1
Looking at the second part of the orbit
(+110° to 250° in Fig. 3), we get:
P sin vkaXx
Yoz = wzkz 24 -1 (8C)
/ l—lz& sin Nkpxy cos Nksx, + cos Nkpxpy sinwNksxy,
3
_ P2 sin vkaxo (8&)
yo3 = w?ka

Comparing the two expressions for the ampli-
tude yo3 and remembering that x, = 180° — (x5 +
X2 + X3), we now get an equation for calculating
the unknown azimuthal value x5 and the amplitudes
of the stationary curve can thus also easily be
found.

Taking as a numerical example (from the de-
velopment of a 100 MeV electron-synchrotron), we
might for instance have: P; = +8.1%, P, = +10.4%
of II].(.OZR, kl = k2 = k3 = 0-5, Xy = X3 = 600 and
calculate the amplitudes of the stationary orbit
to be: yo1/R = —6.1%, yo2/R = —3.04%, and yo3/R =
—7.7% with x5 = 40°.

As can be seen from Fig. 3, the disburbing
forces have, in this case, placed the resulting
orbit far inside the undisturbed orbit with peaks
directed in the opposite direction to the pertur-
bating forces, i.e. outwards.

It is easy to extend this method so as to
calculate the closed orbit for a plurality of dis-
turbing constant forces.
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sin vkaXpy cos Nkaxy, + , 1—13 cos Nkoxp sin Nksxy

directed force. Using equation (2) on the first
part, we get the following values:

y1 = ;% (cos \/_1;1—')(1 - 1) (9)

and,

g sin Vkyx;

y1 = i (9a)

for the point on the curve where the two parts

meet. The second part of the curve will give us:
¥ =<y +1-2—P cos Vipx _1_2_P (10)
1 a  wkp 252 T ko
y1 = + (ya + E%E;) Nkp sinNkoxp (10a)
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for the same point. The equations (9), (9a) and
(10), (10a) allow us to calculate the forces P;
and P, when the peak y, of the deviation is given.
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) .
Py = _yawzkl sin Vkoxo (11)
/ lﬁl sin Vkyx; (1 — cos Nkpxs) + sinVkpxy (1 — cos Nkyx;)
2
/' %‘- sin Nk;x; cos Nkaxs — sinNkpxp (1 — cos Nkyxp)
Py = +yaw2k2 2 (11a)

As a numerical example, we choose: k; = kp =
0.5, x3 = 36°, xp = 18° and y,_/R = 1% and obtain
for the forces mP; = —3.50%, mP, = +6.31% of mw?R.
The peak of the deviation will become higher and
sharper when the inwardly directed force is made
greater and is acting over a smaller azimuthal
range.

We will now investigate the free oscillations
of the particles around the closed orbit. The so-
lutions of the differential equation (1b) will
again give us a curve composed of sinusoidal or
hyperbolic (resp. parabolic) parts in the same way
as for the closed orbit. The circumference might

-1 < (cos Nkix; cos NkpXp — ———=

have gzimuthal parts with various values for the
frequency-coefficient k and the free oscillation
will then also contain various parts which have to
be fitted together at the boundaries where the k-
values change. We can for instance write the
first part of the oscillations as follows:

y = Ay cos Vkix + By sin~vkjx (12)
y'= =A; Vk; sin vk x + By Vk; cos Vk;x  (12a)

vhere A; and B; are constants determined by the
initial conditions of the free oscillation. At
the boundary where the frequency-coefficient
changes to kp, we consequently get:

V1 = Al cos Vklxl + By sin Vklxl = Ay

yi = —A; Vky sin~kyxy + By ¥ky cos Vkyxy = By Vkp
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In this way, we can calculate the constants
Ay and By for the next part of the orbit and, suc-
cessively in the same way, the complete oscilla-
tion. If the frequency-coefficients are negative,
the corresponding part of the curve will be hyper-
bolical. In this case, the possibility arises
that the oscillations might become unstable with
steadily increasing amplitudes resulting in an
ejection of the particles.z’3 Our case is exactly
the same as for the strong focusing cyclic accel-
erators and from their theory, we can take the
criterion for stability to be:

ky + kp el
sinNkyx; sin Vk2x2> < +1 (14)

2 VK kp

When the expression shown in brackets exceeds the
limits +1 or —1, the oscillation will become un-
stable. ILet us for instance take a perturbation
acting over x; = 60° with an outward decreasing
force giving the negative frequency-coefficient kj
with the frequency-coefficient for the rest of the
circumference being kp = +0.49: The condition
(14) will then give the limit of stability to be
k; = =0.372 (i.e.'JEZ = 0,611) which again means
that the relative decrease of the inward directed
Q.862 )%when y is

mPo,/mwZR
An outward

the increase of the orbital radius.
directed force (i.e. Py negative) increasing by

perturbative force must be

the same amount would also make a resonant extrac-
tion of the particles possible. Fig. 5 shows some
increasing oscillations of particles very near to
the stability limit. The wave-length of the free
oscillations is close to twice the circumference
of the orbit.

(13)

(13a)
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Fig. 6 displays the growth of the amplitudes
for various initial conditions and Fig. 7 shows
how the stablility-limit increases when the azi-
muthal range of the force is decreased.

The condition (14) allows us to calculate re-
generative extraction devices where quite suddenly
an extraction force is applied or where the par-
ticle suddenly enters into a field where such a
force is acting.4

Especially with smaller accelerators where
the time for a revolution of the particles is
short, it is not always possible to apply the ex-
traction force suddenly, i.e. in a time which is
short as compared to the duration of a revolution.
In such cases, we might use an extraction force
increasing relatively slowly with time and we will
now see what influence this might have on the or-
bital stability of the free oscillations.

Such a case is shown in Fig., 8. After each
revolution, the extraction force has increased by
a certain amount thus creating new initial condi-
tions for the closed orbit (y.) as well as for the
free oscillations (yp). The calculation is some-
what lengthy but follows strictly the method de-
scribed before. Fig. 9 shows the maximum ampli-
tudes of the resulting free oscillations in two
cases; with k; = kp = +0.49 and for k; = —0,36 and
kp = +0.49, the near resonant case of Fig. 5 and
6.
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Our calculations for the latter case show no
sign of any resonant increase of the free oscilla-
tions. Obviously, the steadily increasing pertur-
bative force has destroyed the conditions neces-
sary for such resonances. A resonant extraction
is, therefore, only possible when the perturbation
force has reached a constant value.
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