Proceedings of the International Conference on Sector-Focused Cyclotrons and Meson Factories

DESIGN OF A 720 MeV PROTON FFAG ACCELERATOR^(*) F.T. Cole^(**), G. Parzen^(***), E.M. Rowe and S.C. Snowdon Midwestern Universities Research Association, Madison K.R. MacKenzie and B.T. Wright University of California, Los Angeles (Presented by F.T. Cole)

A conceptual design for a 720 MeV proton FFAG accelerator has been prepared by the MURA and UCLA groups. The primary interest in such an accelerator is for the production of intense secondary pion beams of several hundred MeV energy. An FFAG accelerator has advantages for this application, arising mainly from beam stacking. A large flexibility in duty factor, from very small values to close to 100%, can be achieved by beam stacking.

Design parameters are tabulated below :

Energy	720 MeV
Injection energy	20 MeV (linac)
Maximum orbit radius	9.0 meters
Radial aperture	2.05 meters
k	8.1
N	16 (spirals)
M	72 (magnet blocks)
K (= 1/W)	66.1
ν _x	3.2
v _v	2.25
A	<u>+</u> 13.1 cm (average radial stability amplitude)
A _y	\pm 4.5 cm (average vertical stability amplitude)
Magnet weight	800 tons
Coil weight	30 tons
Magnet power	4 MW

The non-scaling dynamics problems caused by the radial straight sections are similar to those in the proposed MURA 10 GeV high-intensity accelerator¹. The use of 4.5 radial straight sections per spiral sector reduces the change of v_x and v_y with radius to acceptable values. There are now 8 superperiods in the accelerator; the essential resonance closest to the operating point is

$$v_x + 2v_y = 8$$
.

^(*) Supported by the U.S. Atomic Energy Commission.

^(**) On leave from the State University of Iowa.

^(***) On leave from the University of Notre Dame.

Session VII

- 352 -

The magnet-block design follows that of the proposed MURA accelerator. The spiral pole pieces are separately machined and mounted on standard yokes. It is possible to reverse some or all of the return legs to provide easier egress for particles.

Accelerating systems employing either tuned or untuned cavities can accelerate 100 μ A with an average RF power less than 1 MW. The untuned system is less efficient, but also less complicated.

Output is limited by space-charge effects. A time-average current of 210 μ A, or 1.3 x 10¹⁵ protons per second, can be accelerated, even including bunching effects.

A more detailed description of the design than is possible here is being submitted to Nuclear Instruments and Methods for publication.

Reference

^{1.} MURA Staff, Proceedings of the International Conference on High Energy Accelerators (U.S. Atomic Energy Commission, Washington, D.C.), 1961, p 57.