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This paper deals chiefly with this problem : Given the magnetic field of a
cyclotron, what initial conditions of position and velocity are to be given to a
particle in order that it should be ejected? A second question will be more briefly
treated : In case the ejection occurs, at what azimuth does it take place?

I will restriet myself here to the study of median plane trajectories, thus
leaving out of account the problem of vertical focusing. The method used rests basic-
ally on the choice of convenient curvilinear coordinates, the possibilities of which can
be developed in two direetions : either to find out the shape of stability boundaries
by the means of topologieal considerations, or to get approximate solutions by an

iteration process.

1. Curvilinear Coordinates and Equations of Plane Motion

Let the set of equilibrium trajectories C be plotted (Fig. 1) and extended
sufficiently beyond the maximum energy radius, Each point of the plane is defined by
its coordinates R, a, where R is the average radius of C and a the azimuth of the normal
to C4 Let e = %% be the ratio of the normal distanece between two neighbouring trajee-
tories to the difference of their mean radii;

p the radius of curvature of C;, and a the

radius of curvature of the orthogonal curves L v

to the trajectories C. One then has Y f \

1_ 1 de . s/ :

a =" peda’ where e, p, a are functions of ; |
Ry Re

R, a, periodic in a with period 27/N.
The energy of a particle on an Fig, 2

equilibrium trajectory is defined by its rig. 1

velocity v or, which is better, by its

velocity related to the proper time

u=vM - vie®? (= p/mo)e u is a funetion

of R only, the behavior of which is given by

the curve A in Fige. 2.

Let T be a given arbitrary non-

accelerated trajectory, with given velocity U

(V in usual time). The line U = C t cuts the 8 e re. 4

curve A in two points of abscissas Bi and Re’ —
Fig, 3

I\

to which correspond two equilibrium
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trajectories C; (internal) and C, (external)s As U is inecreasing from zero, the
radius Bi(U) of the equilibrium trajectory climbs the left slope of A,

The set of equilibrium trajectories and the law of velocity n(R) specify the
magnetic field H, due to the relation 1/p = qH/mou.

A plane trajectory I' is defined by the functions R(S) and a(S), where 8 is the
length along the trajectory. One defines (Fige. 1) the angle e of I with the 0 it
crosses, Let EN and EU be the components of the eleectric field normal and tangent to
Ty and h = nH the extra field of any magnetic bump, The system of differential
equations for the plane motion is then

dR _ sin ¢ da _ sin e 4 808 €
ds e * das a p ’
de _sine cose lu a Eﬁ _lu n (1)
dS = a p oU m UV pU"?
E
au _a U |
ds " me V

If EU = 0, U is a constant and the system reduces to its first three equations,

2. Ejection Theorem for Free Oscillationsg
"Free" means here the absence of any electric field or magnetic bump, and

accordingly the velocity U is constant. The system (1) becomes

dR _sgin ¢ dg _ sin ¢ L o08 €
d3 = e ? 48 a o ' -
(2)
de _8ing ocose _1lu

ds pU °

= =5 >
One ocan state :

The necessary and sufficient condition for a particle of fixed velocity U to be
ejected is that its radius R reaches the value Be with an angle e positive,
and inversgely :

The necessary and sufficient condition for a particle which is moving outwards to

be repelled inwards (at least for a while) is that ¢ becomes zero before R has reached
Be' As long as the motion remains inside Ge, the successive minima of R are smaller than

R, and the successive maxima lie in the interval (Bi, Bo)'
This theorem concerns only "centred" t{rajectories, meaning trajectories which

have the cyclotron centre on their concave side.

3. "Cage" Surfaces

We will use in the following a representation in the R, ¢, a space.
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Consider for a fixed veloeity U the trajectories C, and 00 of radii R, and R ;

i
they are straight lines in the R, €, a space (see Fig. 3). Ci may be stable or
uns table,

It can be shown that the trajectory Ce is always unstable., In the linear

approximation for betatron oscecillations about Ce there exist two one-parameter families

of motion
d
ARy = Apy(a) exp(-va) , €y = A % (a) (-vpy + as') .
a 3)
AR, = Bg,(a) exp(+va) , €2 =B % (a) (vpo + 535 ),

where AR = R -~ Re s v>0; o and ¢, periodic with period 27/N and with definite signs;
e/p is evaluated along Ce; and A and B are arbitrary constants, The first motion
vanishes as q - + o, the second as ¢ +» - o,

From this we may infer that also for the exact system (2), there exists a one-
parameter family of trajectories which tend towards Ce as o -+ + c«, and another family
which tends towards Ce as q -+ = o They are asymptotic to the motions in the linear
approximation (3). In the R, ¢, a space these trajectories generate two surfaces I,
and Z, which have the straight line R = Re in common, We will consider only the left
parts of these surfaces (R £ Re)° Both Z; and I, are periodic in a with period 27/N.
They are eylinder-like surfaces, and cut the R, a plane at abscissas smaller than Ri'
To build these surfaces it is simpler, rather than using the two families of asymptotiec

trajectories, to consider ¢ as a function of R, a obeying the partial differential

equation
sin ¢ de sin ¢ cos ey de sine cos e _1lu
el ( .t —-;—-) e .t "ou (4)
for the boundary conditions at Z; ¢ € = 0 and (gg) =2 (cy+ 1 ggl) for R = R , and
e drR’* T p @1 da e’

at 2, : € = 0 and (%ﬁ)z = % (v + %2 %ﬁz) for R = R_. This constitutes a special case
of Cauchy's problem.

For the case that the set of real(meaning in the median plane, not in the R, ¢ , a
space) equilibrium trajectories has a symmetry axis, the two surfaces I; and Z, will join
tangentially in the R, a plane with vertical tangent planes to form a single surface Z.
The junction line (periodic in a) is entirely to the left of R,, since the real trajec-
tories enter more inwardly than Ci.

When the set of real equilibrium trajectories has no symmetry axis (as for spiral
ridge sectors), one may consider this set as derived from a symmetrical one by the
variation of a parameter; and, if one admits that the solution of Eq. (4) depends

continuously on this parameter, the two surfaces I, and I, will still join as in the

case of symmetry,
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As above, these results concern only trajectories of sufficiently large
energies to be centred.

The tube-like surface L defines two regions in the R, ¢, a space, and no
trajectory except those which lie on I can cross £, Hence, the interior of this
surface is the non-ejection zone, and any particle following a trajectory originating
from a point outside I is ejected. We call I the "cage" surface, to distinguish it
from stability boundaries, which might, at least a priori, exist inside or outside I
without any connection ejection,

The behavior of the trajectories is particularly simple in the case of an
azimuthally uniform field. The Eq. (2) becomes

dR:sine ,g-gz-c—q_s__g gﬁ—.—.__gcos -i]-;

as as R °* aS- R (5)

acle
™

where R, a now are the ordinary polar coordinates, This system is integrable (Stormer's

invariant), with the solution

Rcose¢ ~-%R)+K=0 , « =.[ cot ¢ SR 2 -K a8 (6)

B /s\RR Z(@-x2 PR

R
Here K is a constant and ®(R) = j. !éﬁl dR with Re arbitrary, This leads to the
Ro

surface I of Fige. 4, the cross-section of whiech is given by Eqe (6) for K = @(Re) - Re’
any trajectory inside I lies on a tube T characterized by a value K > Ki = Q(Ri) - Ri
(the value for C,) and < K = 2(R)) - R,

4, Extraction
The purpose of any extracting device is of course to displace the R, ¢, a conditions

from the inside to the outside of the surface I. Let us consider what the above

theoretical considerations imply on the means for doing this,

The effect of the RF acceleration is gradually to shrink the surface I as U rises
(Fige 2). Even if C;rewains stable, this shrinking causes the inner points near I,
corresponding to real trajectories of large amplitudes, to traverse I and hence be
ejected, Moreover, ci may become definitly unstable. In this case, for a given energy,
the inner trajectories are probably unrolling asymptotically towards Z, and this
obviously enhances their tendency to cross I during the acceleration.

A fast extraction will oceur when by some deflecting device the particle is
given a sufficiently large kiek in R, €, a for the point J itself suddenly to cross
I (Fig. 4).

Let us now examine the case of repeated smaller kicks (electric deflector or
magnetic bump) deseribed by the last two terms of the third Eq. (1) The process can
be easily followed for non-accelerated particles in an azimuthally uniform field, Bach

kick causes a change in the value of the constant K of Eq. (6), and the R, e, a point
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thereby to pass from one tube T to another. If the perturbation per turn is small
enough (as by regenerative extraction), K increases monotonicly from K, reaches
and exceeds Ke’ whereby the ejection is accomplished, If the perturbation is suitably
small, K undergoes a series of oseillations, the extrema of which always occur at
practically the same azimuth with the maximum or the minimum at the mean azimuth of
the deflector. Then two possibilities can occur, presumably according to the form of
the deflecting field : a) There is no trend in the oscillations of K, and the R, ¢ , a
trajectory lies from time to time on a tube very near I, thus providing a sort of
storage., The maximum radius (~ Re) is always reached at the same azimuth, and it is
theoretically possible to give the particle a supplementary kiek to extraet it without
using any septum, If in particular the perturbing field is quite small, as will be
the case in the interior of the cyclotron, where the action of the deflector vanishes,
there is an adiabatic effect by which the oscillations of K cancel. b) The oscillations
of K do have a trend, and the maximum of R approaches smoothly its extraction value Re'
always at the same azimuth,

These results are obviously connected with the phenomena of resonant extraction'),
spill beamz), and experiments on beam debunching in FM cyclotrons3). The inclusion of
RF acceleration, as well as field modulation, will complicate the results, but

probably not essentially.

5. Example of Approximate Solution : Fast Extraction

Consider Eq. (1) where we set n = O, 9 _H = f(R, a), and assume E negligible
with U still a constant., An approximate method of solution, based on P1card 8 process
of iteration, is the following : we neglect in a first step the influence of the field
modulation in e, p, a, replace EN(R, o) by an average function EN(R), and hence f(R, a)
by an average function %Z(R)e Eq. (1) then reduces to Eqe (5) with the extra term Z(R)
in the last equation. This system is still integrable and yields

Rcos e =~ ®R) +G(R) =Ct , a= /.cot € %B ’ 7)

where G(R) =.[ RZ(R)dR. Away from the deflector, one suppresses G(R) and obtain
R
again Eq. (6).
The ejection condition in Section 2 may be written in accordance with these
equations, giving :

R R

q e e
=V REH(R)dR > Ro cos € = R +[
- Mo Ro e Ro

aR ,

(=3 1]

where R, relates to the entrance, and R to the exit of the defleetor., Given the
angular extent Aa of the deflector, R, may be found from the second equatlon (7); for
instance, if €0 = 0 , Ro = R;(U), one obtains Bi (__3_ ENBiAa)Z j' (u - 1)dR, a

1
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condition for the strength of the deflector.

Let us now denote the solutions of Eqs (7) by Rs(8), ¢, (8), «,(8)s The second
step of the approximation is obtained by introducing these on the right hand sides of
Eqe (1)e Then, by simple quadratures, new solutions R,(S), €2(S), a>(3) may be found.
Let us take Ry = R as the independent variable instead of S, and set p = r(1 + 1),

e =1 + ue Then by Eqe (6) one has f'}»da = 0 and fuda = 0 over a full equilibrium
trajectory, and we get,

- dR _das dr__
B2 = 732 R, m®] * 9% =T @ m) *a®, @) °

- dey dR Z(R) dR
dez = 177 2R, a) T a(R, ai) +l:f(B, ar) 1+ MR, a4) ] sin ey

which improves the approximation and yet can be treated analytically. In particular
the first equation permits one to optimize the azimuthal position of the deflector by
the variational equation & Re r__ _ 0, or Be 4R su = 0.
« "1+ [1+ u(®, a))] 6a
0

This method can also be used for slow extraction; it gives some of the results

-stated in Section 4,
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