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We were interested in the question of the quality of an external beam in a rather 
different situation from that just described Dr. Welton, namely, for a ISO-Mev 
synchrocyclotron with an infinitely small dee voltage. Actually the dee voltage is of 
the order of 20 kv, giving an orbit spacing of less than 0.1 mm, while radial oscilla
tions occur with amplitudes of 2 ern, In the following we will neglect the possibility 
of coherence between the oscillations of the individual particles. The particles are 
deflected by a regenerative deflection system. For this reason we have made a local 
field distortion (the regenerator) at e = o , The strength of the regenerator will be 
characterized by the function I(r), defined as 

If r ) = J ~ r de (1) 

This definition is equivalent to a thin lens approximation of the necessarily extended 
field distortion. 

In the unperturbed cyclotron field, i ,e , from e = + 0 to e = 21t - 0 the particle will 
make the normal radial betatron oscillations with a frequency w =Yr=n around the 
equilibrium orbit r = roo The vector w -1/2(r - r o)' w 1/2 r l , describing this oscilla
tion in phase space, will rotate in one revolution of the particle in a clockwise direc
tion through an angle of 21tW = 21t - a with a = 2it (l - w) ~ nit. If we describe this in a 
coordinate system, rotating with unit frequency and coinciding with the original co
ordinates whenever e = 0, we get a slow anti-clockwise rotation over an angle of a per 
revolution of the particle. We can describe this rotation by the equations 

d(r - r )
o -a w r ' 

d m 
(2) 

d r'� 

d m� 

where m is the number of the revolution (m = e/21t), and where r - roand r' represent 
the actual radial amplitude and its derivative with respect to e only when e = o , 

The effect of the regenerator is given by 

tir = 0 tir' = - H r ) 

or 

o 

d r' 
- I(r)

d m 
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The resulting orbit in phetse space 
is shown in Figure 194. To solve the 
successive equations (2) and (3) for 
many revolutions we have made a 
smooth approximation of the orbit 
shown the figure by combining (2) and 
(3) into 

d(r - r )
,...----:_........:0_ = _ ex w r' 

d m 

d r' 
= ex(r - ro)/W - I(r)

d m 

To get an idea of the accuracy of 
these equations we have considered 

l(r) =0.2+ ois (r-ro) the case r 0 =constant, I =0,2 + 0,15 
Fig. 194. Successive revolutions in r, r' (r-r o), and n =0,108 (Le , ex =200 ) . 

coordinates, represented in a coordinate Then (2) and (3) can be solved exactly 
system rotating with the cyclotron fre as I(r) is a linear function. The values 
quency. This system coincides with the of (r-ro) and r', measured in the center 
original system each time e =0, Le , of the regenerator, are given by 
when the particle is in the regenerator. 
The dotted line gives the smooth approxi r-r 1.09 + A cos 0.256 mo 
mation. 

r' = 0.698 A sin 0.256 m 

while the smooth approximation (4) gives 

r-r o = 1.11 + A cos 0.258 m 

r' = 0.697 A S1n 0.258 m 

The error corresponds to a very small change in nand I(r), without any significant 
effect on the expected results. 

The phase lag ex is relatively independent of the oscillation amplitude, in our 
case ex remains practically constant for amplitudes up to 4 ern (ro = 120 cm). The 
regenerator strength I(r) is a markedly nonlinear function, it does not seem likely, 
however, that this will effect the validity of the smooth approximation. 

The equations (4) can formally be described as Hamilton equations following 
from a Hamiltonian 

H(r,r';m) = - : [i r'2 +; J ex W (r-r o ) - I(r)dr] = 

( 5) 

= -; [i r' 2 + V( r) ] 

This represents an oscillation in a potential well V(r), which is a slowly varying 
function of rn, as r 0 and, therefore, also ex change because of the acceleration. In 
Figure 195 the lines exw (r-r o ) and I(r) are shown for a number of values of roo The 
difference between the lines is the integrand in (5). The as sumed regener ator strength 
is represented by 
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I =0.34 (r-l20 em) + 0.07 cm-l (r-120 cm)2 

Figure 195 further shows the 
corresponding functions v(r). FroIn2cm 
the fact that H (r', r, In) changes adi
abatically it follows that a group of 
particles, all lying on a curve H (r', r, 
Inl) =C 1 will SOIne t'irrre later be found 
on a curve H (r', r, mj ] = C2, where C2 
has to be determined so that the areas 
of both curves are equal. As r 0 in
creases, the depth of the potential well 
decreases, so that the particles will 
eventually spill over. This is shown 
by the lower curves (Fig. 195). The 
curves H =C are shown here for par
ticles which would have an arrrpli.tude 
of 1.23 CIn at r = 120 CIn if thereo 
were no regenerator. 

The curves have thus an area of 
1tW (1.23 CIn)2. At r =119.7 CIn theseo 
particles have arrived on the separatrix 
and fz orn then on the amplitude increases 
roughly exponentially until the .par-ti.cle e 
leave the cyclotron. If we neglect the 
acceleration during this part of the de
flection, we see that the momentum of 
particles with 1.23 CIn radial oscilla
tion ampfitude corresponds to r 0 =119.7 

-I CIn while particles without oscillation 
amplitude will be ejected at r o =120 
CIn.

-2 

Fig. 195. Top: I(r) and exw (r-r o ) . Figure 196 gives the relation be
Center: The potential well V(r) of Eq. 5. tween the oscillation amplitude and the 
Bottcrn: Lines H = constant for three final value of r 0 calculated in this way. 

values of r o' The curves have the� The energy spread, due to the radial 
sarne area.� oscillation, is thus quite srnal.L, For 

this it is essential that the curvature 
of I(r) near the final value of robe 

small as this will help to keep the potential well deep until r 0 is quite close to its 
final value. The area in the r, r' space is, of course, conserved. The possibility of 
focusing the external b earri both radially and axially will be dete r mrned, however, 
rnarnly by the distortions due to the nonlinearity of the fringing field and the field in 
the channel. 

The foregoing analysis is a special case of nonlinear resonance, namely, a non
linear integral resonance. * 

*R. Hagedorn, M. G. N. Hine and A. Schoch, CERN Symposdum on High Energy 
Accelerators, p. 237 (1956). 

201 

Proceedings of Sector-Focused Cyclotrons, Sea Island, Georgia, USA, 1959

CYC59D05



~ 

"'0 
::J 

+-' 

0... 2cm 
E 
0 

U 
In 

0 

ro .. 0 
119 120

~E/E 
i • 

-002 -0.01 .~ 

Fig. 196. The relation between the value 
of r 0 at the moment the deflection sets in 
and the original oscillation amplitude. 

TENG: How does your calculated energy spread compare with the experimental 
data? 

VERSTER: We have not yet measured the spread. 

TENG: I made similar calculations for the synchrocyclotron. The calculated 
energy spread turns out to be much too large; the real energy spread they measure 
is much smaller. 
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