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I must confess that I am a little overwhelmed at the undeserved credit that is 
being given to me for an old paper in which I was simply exploiting some of the 
methods that are in the astronomical literature for this physical problem of the or
bits of particles in magnetic fields. You may say there is nothing new under the sun; 
certainly there is very little that the astronomers haven't discovered about numerical 
methods. 

I want to ask whether some other methods that again are quite old might perhaps 
be of some use in the problems which have been talked about this morning and this 
afternoon. These are really somewhat technical matters of computing, but I think 
they can be e xpl a ine d fairly simply. 

The basis of the integration of ordinary differential equations is to take points at 
a finite interval apart, and supposing you already have a number of points, you find 
at each of them the slope of the orbit and you use a number of backward values of the 
slope to predict a finite change to the next place in the orbit. The formula for doing 
this, or one of them, is often called Adams' formula. It actually was given by Adams 
in a certain paper, but you will find it attributed in various textbooks to Laplace, but 
Laplace attributes it to Lagrange(l). Don't always take unquestioned what people say 
about the sources of their formulas. 

Well, this particular formula can be replaced by another which I believe is due to 
Gauss, although I am not sure. If, instead of taking places so that you have fairly 
small distance changes along an orbit, consider a case in which you have considerable 
distances after which the particle is nearly back in the same place as before. Such 
cases are found in various astronomical orbit calculations, particularly those of 
earth satellite orbits and to some extent at any rate in these cyclotron calculations. 
The successive places you get to after a definite number of revolutions may be fairly 
close together. If they are, it may be possible to extrapolate smoothly along many of 
these. If so, there is a formula for carrying out the integration ahead just like the 
Adams formula except that you replace the differential coefficient in the orbit by the 
whole displacement in one revolution which you calculate. 

If you have this condition for successive steps of several revolutions ahead, you 
can use this process to extrapolate a large step of several revolutions. Then you 
calculate a single revolution and extrapolate again a large step of several revolutions. 

We have found recently that this method, which does not work well for most as
tronomical cases, does work well for an earth satellite. You can get away in an 
earth satellite orbit calculation with calculating around the orbit at about one-minute 
intervals every tenth revolution and then going IO revolutions ahead. The formula 
is just like Adams' formula except that it uses the small difference to give the large 
difference, instead of using the differential coefficient to give the large difference, 
and it is a type of formula that is well-known in the literature(2). 

Whether this formula would have any application to the cyclotron case I don't 
know. It might have. What it will do for us is save, say, up to 900/0 of the actual com
puting. It does not make it possible to calculate an orbit you could not otherwise 
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calculate. One can, however, go even further. Poincare showed that under certain 
circumstances you can get expansions in harmonic terms of motions in several 
variables, and if at each revolution you had a fairly large step it might" still be pos
sible, even though the equations are highly non-linear, to expand the result as a 
series in terms of suitable variables. If you do this the formulas that you finally 
get do not give you the long-time motion. If you use them for a small time ahead, 
there are formulas that can be used to step the coefficients of these full expansions. 
They are of the same general nature as the integration-ahead formula that I have just 
described, although the details have to be different and some of the equations that you 
get for integrating ahead are of an unstable character and have to be dealt with as 
what are sometimes known as stiff equations(3). 

Using a finite Fourier analysis appears possible; using, say, only 12 or 24 terms 
might be sufficient for the astronomical problem of the combined motions of Jupiter 
and Saturn, where you are bothered by near commensurability, in their travel around 
the sun, which means that about every 5 revolutions of Jupiter you get back to a similar 
configuration. Whether such a method would be useful in the cyclotron problems again 
I don't know, but it seems that you can very often with these physical problems take 
advantage of the fact that the astronomers have been working at computing very much 
longer than the physicists. 

CHAIRMAN JUDD: Thank you very much, Professor Thomas, for pointing out 
that the bag of tricks from the past has not been exhausted yet. 
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