
STATIONARY DISTRIBUTIONS OF NON GAUSSIAN
ORNSTEIN-UHLENBECK PROCESSES FOR BEAM HALOS∗

N. Cufaro Petroni, Bari University, INFN Sez. Bari, Italy
S. De Martino, S. De Siena, and F. Illuminati, Salerno University, INFN Sez. Napoli, Italy

Abstract

Beam halos are studied in a dynamical stochastic model
with enhanced transverse dispersion and transverse emit-
tance growth. We explore the effects of non-Gaussian
noises with larger variances and possible jumps. The sta-
tionary distribution of Ornstein-Uhlenbeck processes with
particular Lévy noises is then calculated. For Student pro-
cesses the asymptotic spatial behavior coincides with that
found in other independent numerical halo models.

INTRODUCTION

The charged particle beam dynamics and the possible
halo formation are described in this paper in terms of
stochastic processes. To have time reversal invariance a
dynamics is added; but since our Markov process is not
derivable, we are obliged to drop the momentum equation
and to work in a configuration space. Consequently the dy-
namics is introduced by means of a stochastic variational
principle. This scheme, the stochastic mechanics (S.M.),
is known for its application to classical stochastic models
for quantum mechanics [1], but is suitable for a large num-
ber of other systems [2, 3]. This leads to a linearized the-
ory summarized in a phenomenological Schrödinger equa-
tion [4], and the space charge effects can be introduced by
coupling it with the Maxwell equations [5, 6].

A new role in this stochastic model can be played by
non–Gaussian, Lévy distributions [6]. Their today’s popu-
larity, however, is mainly confined to the stable laws [2].
We use instead non–Gaussian Lévy laws which are in-
finitely divisible (i.d.), but not stable as Student and
Variance-Gamma (V.G.) laws [6, 7]. This has two advan-
tages: first, at variance with stable non–Gaussian laws, the
i.d. laws can have finite variances; second, they can in-
crementally approximate the Gaussian laws. On the other
hand an i.d. laws is all that is required to build the Lévy pro-
cesses used here to represent the evolution of our particle
beam.

STOCHASTIC BEAM DYNAMICS

In the S.M. model the position Q(t) of a representative
particle in the beam is a process ruled by the Itô stochastic
differential equation (S.D.E.)

dQ(t) = v(+)(Q(t), t) dt +
√

D dW(t) ,
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where v(+)(r, t) is the forward velocity, dW(t) is the in-
crement process of a standard Wiener noise, D is a con-
stant diffusion coefficient, and α = 2mD is an action con-
nected to the emittance of the beam. To add a dynamics
we introduce a stochastic least action principle and we get
a Nelson process [1]. If ρ(r, t) is the p.d.f. of Q(t), and we
define the backward velocity v(−) = v(+) − 2D∇ρ/ρ and
the current and osmotic velocities v = (v(+) + v(−))/2
and u = (v(+) − v(−))/2, from the stochastic least ac-
tion principle we get that the current velocity is irrotational,
mv(r, t) = ∇S(r, t), and the Lagrange equations of mo-
tion for ρ and S are

∂tρ = −∇ · (ρ∇S/m) (1)

∂tS = −∇S2/2m + 2mD2ρ−1/2∇2ρ1/2 − V (2)

where V is an external potential. Here the forward veloc-
ity v(+)(r, t) is not given a priori, but it is dynamically
determined by the evolution equation (2). With the repre-
sentation

Ψ(r, t) =
√

ρ(r, t) eiS(r,t)/α , α = 2mD

the coupled equations (1) and (2) become a single linear
equation of the form of a phenomenological Schrödinger
equation, with the Planck action constant replaced by α:

iα∂tΨ = − α2

2m
∇2ψ + V Ψ . (3)

We analyzed in several papers [6] both the stationary and
the non stationary solutions of this equation.

In this S.M. scheme |Ψ(r, t)|2 is the p.d.f. of a Nelson
process; hence when the N–particles are a pure ensemble,
N |Ψ(r, t)|2 d3r is the number of particles in a small neigh-
borhood of r. Our N particles, however, are not a pure en-
semble due to their mutual e.m. interaction: we hence take
into account the space charge effects by coupling the equa-
tion (3) with the Maxwell equations [5, 6]. We studied this
system of differential equations within a cylindrical sym-
metry and we found that for a given external potential no
simple analytical solutions are available and we must resort
to numerical solutions [5]. On the other hand for a given
radial distribution we can analytically solve the system to
find the external and the space charge potentials: this can
be easily done for Gaussian transverse distributions [6].

If, however, a halo is produced by large deviations from
the beam axis, we can suppose that the the stationary trans-
verse distributions are non–Gaussian: consider the family
of the i.d. Student laws Σ(λ, a2) with p.d.f.’s

f(x) = aλB(1/2 , λ/2)−1
(
1 + x2/a2

)−(λ+1)/2
(4)
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where λ > 0 and B(x, y) is the Beta function. The
potentials associated to the radial distribution of the cir-
cularly symmetric, bivariate Student laws Σ2(λ, a2) can
now be determined [6], and we can calculate the proba-
bility P (c) of being beyond a distance cσ from the beam
axis: in the Gauss case we get P (10) � 1.9 × 10−22,
while in the Student case with 10 ≤ λ ≤ 22 we get
2.8 × 10−9 ≤ P (10) ≤ 2.2× 10−6. Hence, for N = 1011

particle per meter of beam, we find practically no particle
beyond 10σ in the Gaussian case, but between 103 and 105

in the Student case.

LÉVY PROCESSES

The present interest – from physics to finance [2] – about
non–Gaussian Lévy laws is mostly confined to the stable
laws, a sub–family of the i.d. laws (see [7] for details).
The i.d. laws constitute both the more general form of pos-
sible limit laws for the Central Limit Theorem, and the
class of all the laws of the increments for every stationary,
stochastically continuous, independent increments process
(Lévy process). Non–Gaussian Lévy processes have trajec-
tories with moving discontinuities (e.g. a Poisson process):
a possible model for the relatively rare escape of particles
from the beam core. In the following we will limit our-
selves to 1–dimensional systems. Remark that there is an-
other important subclass of i.d. laws which also contains
all the stable laws: that of the selfdecomposable (s.dec.)
laws. Not only they are the larger subclass of absolutely
continuous, i.d. laws allowing the construction of selfsim-
ilar processes, but they are also connected to non Gaus-
sian Ornstein–Uhlenbeck (O.U.) processes. In fact every
O.U. process with a Lévy noise has a stationary distribu-
tion which is s.dec. (see [7] and references quoted therein).
We are interested in the processes generated by particular
classes of s.dec. laws as the Student and the V.G. [7].

The general i.d. laws are strictly connected to the def-
inition of the independent increments of a Lévy process.
In fact it is apparent that the increments ΔX(t) = X(t +
Δt) − X(t) of these processes must be distributed accord-
ing to i.d. laws. Let now ϕ(u) be the characteristic func-
tion (ch.f.) of an i.d. law, and T a time constant; then
[ϕ(u)](t−s)/T is the ch.f. of the increment X(t) − X(s)
of a Lévy process with stationary transition p.d.f.

p(x, t|y, s) =
1
2π

∫ +∞

−∞
eiu(x−y)[ϕ(u)](t−s)/T du. (5)

According to the Lévy–Khintchin formula [7] a non Gaus-
sian ϕ(u) can be given in terms of a characteristic Lévy
measure ν(B) on (−∞, +∞) which represents the aver-
age number of jumps of non vanishing size belonging to
B. The ch.f. of the law Σ(λ, a2) in equation (4) is

ϕ(u) = 2(1−λ)/2Γ(λ/2)−1|au|λ/2Kλ/2(|au|) (6)

where Kα(z) is a modified Bessel function. These laws are
i.d., but in general not stable.

A Lévy process defined by the ch.f. (6) will be called a
Student process. Its transition pdf p(x, t|y, s) is obtained
from (5) and (6). In general this integral must be treated
numerically, but for particular cases we can get exact re-
sults. In particular [7] for λ = 3 we have a closed, non ele-
mentary form of the transition p.d.f., its spatial asymptotic
behavior which is x−4 all along the evolution, and an ele-
mentary form of the transition p.d.f. for t− s = T, 2T, . . .
In particular, for t − s = T , p(x, t|y, s) is a Student
Σ(3, a2) and we can then produce sample trajectory sim-
ulations by taking T as the time step, since the increments
are exactly Student distributed when observed at the (ar-
bitrary) time scale T . We also introduce the V.G. laws
VG(λ, a) for λ > 0, with

f(x) = (2πa2)−
1
2 21−λΓ(λ)−1(|x|/a)λ− 1

2 Kλ− 1
2
(|x|/a)

ϕ(u) =
(
1 + a2u2

)−λ
;

since their spatial asymptotic behavior is exponential their
variance 2λa2 is always finite. Remark that VG(1, a) is the
usual Laplace double exponential law. Also here from (5)
we can calculate the transition p.d.f. of a Variance–Gamma
process. At variance with the Student process which has
a power law as asymptotic behavior, the Variance–Gamma
process always shows exponential decays so that its aver-
age jumps will be shorter.

ORNSTEIN–UHLENBECK PROCESSES

At present we do not have yet a dynamical theory of
Lévy processes leading to a generalized S.M. allowing a
stochastic control of the beam size. On the other hand the
simple Lévy processes based on i.d. laws with finite vari-
ance behave as ordinary diffusions and, as the Brownian
motion, have no stationary distributions. We can however
produce a simplified model by means of O.U. processes
where a suitable velocity field will keep the process con-
fined in a small region. First of all we can compare the
different, simulated solutions of the following S.D.E.

dX(t) = v(X(t)) dt + dZ(t) (7)

where Z(t) is a Lévy process and v(x) = −bxH(q − |x|)
for given b > 0 and q > 0, with H the Heaviside function.
This velocity field will attract the trajectory toward the ori-
gin when |x| ≤ q, and will allow the movement to be com-
pletely free for |x| > q. Hence for |x| ≤ q we have O.U.
processes, while for |x| > q we have free diffusions. The
process Z(t) in (7) can be either a Gaussian, or a non Gaus-
sian noise. Figures 1 show the typical 104 steps trajectories
respectively (a) for Gaussian, (b) Laplace and (c), (d) Stu-
dent noises with comparable variances. The processes in
(b), (c) and (d) differ in several respects from that in (a).
For b = 0.35, q = 10 and variances smaller than q the
Gaussian trajectories (a) always stay inside the beam core,
and the process is essentially an Ornstein–Uhlenbeck po-
sition process. In the Laplace (b) and Student (c) case the
trajectories are still kept in the beam core, but show a wider
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Figure 1: O.U. processes X(t) from (7) with v(x) of limited range (τ = t/T ): (a) O.U. process with Gaussian noise; (b)
O.U. process with Laplace noise; (c) O.U. process with Student noise; (d) occasional Student trajectory leaving the beam.

dispersion and a few larger spikes (jumps). They also have,
as the Student case (d) shows, the propensity to make occa-
sional excursions far away from the beam core; and finally,
seldom they also definitely drift away from the core. This
feature of a Lévy processes, due to their jumping behavior,
suggests to adopt this model to describe the rare escape of
particles away from the beam core.

When on the other hand v(t) in (7) simply is −bx, we
have full O.U. processes and it is possible to calculate the
law of the stationary distributions from the form of the
noise. In particular for the Student Σ(3, a2) noise it is pos-
sible to show that

ψ(u) = lnϕ(u) = −b−1 [a|u| + Li2(−a|u|)]
where Li2(x) is the dilogarithm function. The form of the
corresponding p.d.f. is not known analytically, but it can
be assessed numerically by calculating the inverse Fourier
transform of the ch.f.. It comes out from these calculations
that the stationary O.U. law for the Student Σ(3, a2) noise
still shows the same x−4 behavior which characterizes the
transition p.d.f.’s all along the process evolution. Finally it
is important to remark that this same asymptotic behavior
x−4 has been independently found in other different nu-
merical simulations [8] of halo formation in particle beams.
This seems to substantiate the conclusion that behind the
dynamics of a charged particle beam there is some sort of
Lévy–Student process.

CONCLUSIONS

Several problems are open along this line of research.
First, we should find the Lévy–Khintchin functions of the
Student laws to fine tune the frequency and the size of the
jumps, and the increment laws of the Student process at

different time scales [7]. Second, it is important to have
the integro–differential form of the Chapman–Kolmogorov
equation to analyze the time evolution of the process: a
forthcoming paper will be devoted to this topics. Then it is
necessary to add a dynamics to have controlled diffusions:
namely to build a generalized S.M. for the Lévy processes.
Finally we must search for empirical or numerical evidence
beyond what is already known [8] to support the hypothesis
that the path increments of a beam are in fact distributed
according either to a Student, or to some other Lévy law.
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