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Abstract 
The field in coil-dominated superconducting  magnets 

can be maximized by optimizing the coil shape. In this 
process the coil size and hence the cost of the magnet can 
be reduced. We have used the variational calculus and the 
technique of random search optimization to investigate 
the optimum coil shape and have shown that the 
optimized shape differs markedly from the conventional 
cosθ shape. A block coil dipole magnet giving a field of 
8.4 T has been designed as a demonstration.   

INTRODUCTION 
Superconducting magnets have become an essential 

component in high energy accelerators like LHC, RHIC, 
HERA etc. [1-3]. Many large detectors also use such 
magnets [4-5]. In these magnets one has to produce a 
large magnetic field using coils with a current density  
below the allowed value. At the same time the quantity of 
superconducting cable is also not unlimited. In this 
situation one has to optimize the coil shape so that the 
required field (with the requisite field quality) is produced 
by using minimum amount of cable.  

Superconducting dipole magnets used in accelerators 
are variations of the so-called cosθ magnet. A current 
sheet having an azimuthal shape which varies like cosθ on 
a cylindrical surface gives a perfectly uniform dipole field 
[6]. But in such cosθ magnets, though the field is perfect, 
the coil size is large. In practical magnets one can tolerate 
a finite field deviation of about 10-4 for ∆B/B. Therefore 
one can deviate from the cosθ shape in order to reduce the 
coil size. This also means that for a given coil size and 
allowed current density one can generate higher magnetic 
field by such optimization. 

In this work we have investigated the shapes of the 
inner and outer edges of the coil by using the calculus of 
variation and the technique of random search 
optimization. Our investigation has shown that the coil 
width should increase marginally as one goes away from 
the median plane, whereas in the cosθ design the width is 
maximum in the median plane.  

FIELD DUE TO COIL 
The vertical component B(x0,z0) of the field at a point 

(x0,z0) due to N  turns in a coil carrying a current  I  is  
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Here zmax is half the height of the coil, a(z) and b(z) are 
the shapes of the inner and outer edges (Fig.1). 
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Figure 1. Geometry and shape of the coil. 

OPTIMIZATION OF COIL SHAPE 
   We have attempted to optimize the shape of the coil by 
the technique of random search. However, we have first 
used the method of calculus of variation to increase the 
magnetic field for a given coil size (irrespective of the 
field quality).  

Optimization by calculus of variation 
The field B(0,0) at the centre of the magnet is  
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F(a,z)  and  F(b,z) are the two parts of the integrand. The 
Euler-Lagrange equation for maximizing  B(0,0) is 
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This gives 
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From eq.(3) and eq.(5) one gets 
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Therefore the inner edge of the coil comes out to be 
circular. Similarly the outer edge also should be circular if 
the field is to be maximized. This maximization is at the 
cost of deteriorating the field quality. A cosθ coil shape 
gives a very uniform field but it is not maximum 
achievable with the given quantity of cable. If one wants 
to increase the magnetic field but at the same time wishes 
to keep the field quality under control, the coil shape is 
expected to be in between the circular coil shape and the 
cosθ shape.  

Optimization by random search method 
   In the variational method we have not put any 
restriction on the field uniformity ∆B/B. In the random 
search method [7-9] we optimize the coil shape for 
generating the required field with the minimum ∆B/B 
possible and using a limited quantity of superconducting 
cable. The technique of random search optimization is 
very easy to use and can be applied to a variety of linear 
as well as non-linear problems. 
   Instead of finding the shapes a(z) and b(z) analytically, 
in the random search method we find these shapes in 
terms of some parameters. We first select a probable 
shape for a(z) and b(z). We have taken the following 
polynomial-like shapes.  
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The parameters a1, a2, a3, b1, b2, b3  determine the coil 
shape. In the search process we first select a random set 
of these parameters (within some ranges of probable 
values), calculate a(z) and b(z) and then calculate the field 
using eq.(1) at a number of points within the region of 
interest (i.e., the region through which the beam passes 
and where the field deviation should be small). In our 
computation we choose the points along the horizontal 
and vertical axes and on the circular boundary of the good 
field region, as shown in Fig.2. At each chosen point the 
field deviation is calculated. 
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where B(0,0) is the required field , i=1,…,n  and n is the 
number of points. The maximum value of all these ∆Bi’s 
is the overall field deviation ∆B for the set of parameters 
chosen at random. For each set of parameters we calculate 
the area of the cross-section of the coil. If the area is 
larger than the allowed area, we reject the parameter set. 

This process is repeated a large number of times. If ∆B for 
a trial set becomes smaller than that of a previous set, the 
trial set becomes the new set of parameters. After a 
number of successful trials we shift the parameter space 
by observing whether the value of a parameter has 
increased or decreased over the previous trials. After 
every cycle of such trials we gradually decrease the range 
of parameters so that the search becomes faster. 

RESULTS AND DISCUSSIONS 
   For demonstrating our method we have optimized the 
coil shape of a dipole magnet producing a field of 8.4 T. 
This is the same as that of the LHC main dipoles at 
CERN. The good field region has a radius of 17 mm and 
the aperture radius is 28 mm. The overall current density 
(over copper and superconductor together) has been taken 
to be 460 A/mm2. This is equivalent to 11850 ampere of 
current in the LHC superconducting cables. 

We have assumed that a field of 7 T is generated by the 
superconducting coil and the rest 1.4 T is generated by the 
iron yoke surrounding the coil. This is an a benifit we get 
from the yoke whose main purpose is to contain the field. 
Fig. 2 shows the shape of the coil optimized for a coil 
cross-section of 11.5 cm2  (the same as that of the LHC 
dipoles) in a quadrant. 
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Figure 2.  Coil  optimized by random search method. 
 
   It is seen that the width w(z) of the coil is larger at the 
end of the coils in comparison with that at the median 
plane. The coil shapes for two different coil areas hasve 
been compared in Fig. 3. The coil shape becomes 
smoother as the coil area increases. As is seen from Fig. 3 
the aperture area inside the coil is elliptical rather than the 
circular aperture generally adopted. It has been observed 
that field quality improves as the coil area is increased.  
   It is difficult to fabricate a coil whose width varies 
continuously as shown in Fig. 2. One has to adopt a 



simpler coil design. The coil fabrication becomes easy if 
the coil consists of rectangular blocks.   
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Figure 3. Optimized shapes for two different coil sizes. 

 
The block-coil [10,11] designed at Texas A&M University 
is an example of such design.  Here, instead of the 
polynomial shape, we adopt a rectangular shape. The 
calculation of field becomes easier in this case as no 
numerical integration is necessary. The optimization also 
becomes much faster as a result. The field Bq due to one 
quadrant of a rectangular coil block is  
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where a and b are the distances of the vertical planes of 
the rectangular cross-section of the coil from the z-axis, 
and c and d are the distances of the horizontal planes of 
the coil from the x-axis. The total field due to all the four 
quadrants is  
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We have used 5 coil blocks (on one side) in our design. 
The LHC dipole uses 12 coil blocks and  the Texas A&M 
design has 10 blocks. Fig. 4 shows the optimized design.  
 

Table 1: Geometrical parameters of the coil blocks 
 

Parameter  Block  A Block  B Block C 
a (mm) 28.0 24.8 9.13 
b (mm) 42.9 55.5 56.9 
c (mm) -26.2 26.4 39.1 

d (mm) 26.2 38.8 47.0 
Table 1 gives the geometrical parameters of the coil. The 
maximum field deviation for this design is 4.10-5. One can 
use more number of blocks and have more number of 
optimizable parameters so that one gets even lower field 
deviation. But for very low field deviations the 
mechanical tolerances becomes impossible to achieve. 
    Recently common coil dipole magnets [12] have been 
proposed for use in dual beam accelerators. Such magnets 
also can be designed by our technique. Superconducting 
quadrupole and sextupole magnets can also be optimally 
designed by the method described here. 
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Figure 4. Block-coil design for a field of  8.4 T 
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