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Abstract
There is a resurgence of interest in Fixed Field Alternat-

ing Gradient (FFAG) accelerators, both in traditional “scal-
ing” and in novel “non-scaling” machines. We focus on the
linear-field FFAG which offers very high momentum com-
paction. Muons require fast acceleration to avoid decay
losses; this necessitates using superconducting magnets
and cavities whose field and frequency are fixed. Fixed-
field acceleration implies the orbit and path length unavoid-
ably change with energy; this results in phase slip of parti-
cles relative to a fixed-frequency waveform. Nonetheless,
depending on the number and location of the fixed points
of motion, acceleration is possible for a limited number of
turns, during which the beam crosses back and forth the
crest. This is facilitated by a serpentine channel extending
from injection to extraction energy when a threshold value
of voltage is exceeded. Emphasis is given to quadratic de-
pendence of path length on momentum as occurs in the
nonscaling muon FFAGs. Finally, mention is made of the
relevance of fixed points to longitudinal motion in an im-
perfectly isochronous cyclotron.

SYNCHRONOUS ACCELERATION
Maintaining synchronism between the charged particles

and the rf cavity oscillating electric fields is of paramount
importance if deceleration is to be avoided. The phase of
the accelerating waveform is determined by the frequency
and the particle arrival time, which in turn depends on
speed and path length. In the isochronous cyclotron, the
increasing length of the spiral orbit is adjusted to keep syn-
chronism with the rf field in the dees and the beam rides the
crest of the wave; beam delivery is c.w. In the synchrotron,
the radio-frequency is swept to match the revolution pe-
riod of the centroid and the head and tail are periodically
interchanged by synchrotron oscillations. In the classical
MURA1 FFAG[1, 2], the central orbit spirals (in a geomet-
rically self-similar fashion) but is not isochronous and so
the rf is swept. In distinction to the synchrotron where the
repetition rate is limited to of order hertz by the ramping of
magnetic fields, the fixed-field accelerator may sweep the
rf at repetion rates up to order kilo-hertz and thereby en-
joys, in principle, a two orders of magnitude advantage in
time-averaged beam current.

Generally, two alternate means of arranging synchro-
nism are used. (I) There is (almost) no net arrival-time
variation and acceleration proceeds on-crest, as in the
isochronous AVF-cyclotron where spiral path length is ad-
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justed to exactly compensate varying orbit speed. (II)
Speed or path-length variation of the beam centroid is com-
pensated by rf sweeping, as in the synchrotron and scaling
FFAG respectively. In this second case, the bunch is con-
fined (despite a small spread of momenta and arrival-time
deviations from the centroid) by synchrotron oscillations.
Both methods have limitations. Developing a magnetic
field shape which simultaneously provides isochronous or-
bits and resonance-free transverse focusing over a large
momentum range is (probably) not possible in cyclotrons
because tune νr = γ = E/m0c

2. The scaling FFAG[1]
and synchrotron adopt the approach of constant transerse
tunes and non-isochronous orbits. Though it has a large
longitudinal acceptance, the transverse acceptance of the
former is somewhat limited by the non-linear field profile
and resonances. When operated d.c. the synchrotron lat-
tice yields a pitifully small longitudinal acceptance due to
chromaticity and horizontal dispersion.

Notice, though strongly influenced by cost and techni-
cal difficulty, the matter of c.w. versus pulsed operation is
a matter choice; lack of isochronism can be overcome by
“brute force” instead of frequency sweeping. If the energy
increment per turn is large enough, then it will be possible
to achieve the final energy before an accumlated phase slip
of π/2 leads to deceleration.

Almost isochronous FFAG
The linear-field, varying-tune non-scaling FFAG

accelerator[3, 4] has recently emerged[7, 9] in the con-
text of fast muon acceleration for a Neutrino Factory
and/or Muon Collider[12]. For this application, large
6-dimensional acceptance is required by the diffuse beam
from the muon production target; and so short is the muon
decay time that the rapid on-crest acceleration is envisaged
to take no longer than a few turns. In this extreme regime it
is possible for the particle beam in a linear magnetic lattice
to cross integer and half-integer transverse resonances
without significant degredation.

On the few-turn time scale, the radio frequency can-
not be other than fixed; and the machine could in prin-
ciple be operated c.w. Ideally such a machine would be
isochronous, but this is not possible over the ±50% ∆p/p
momentum range intended. The linear dependence of path-
length on momentum is set to zero, leaving the second
order (quadratic) term to dominate the longitudinal dy-
namics of this almost isochronous FFAG. This leads to an
asynchronous-type acceleration in which the beam centroid
crosses back and forth and back the crest of the sinusoidal
waveform during the transit from injection to extraction.

Asynchronous acceleration is best understood in terms
of the longitudinal phase space and its number and nature



of the fixed points of motion. Ilucidating the nature of this
motion leads to a general principle for acceleration over a
range spanning multiple fixed points: the rf voltage must
exceed the critical value to link the unstable fixed points
in a zig-zag ladder of straight line segments. The direc-
tion of phase slip reverses at each fixed point, and so the
criterion is simply that the voltage be large enough that
another fixed point be encountered before a π phase slip
has accumulated. Beyond the critical voltage value, a ser-
pentine (possibly narrow) channel extending between in-
jection and extraction energy (and back) opens up and the
longitudinal acceptance rises from zero. This principle was
employed[11] to give analytic criteria for the opening of
acceleration channels in systems with parabolic, cubic and
quartic dependence of path length on momentum; that is 2,
3 and 4 fixed points, respectively, for each π of rf phase.

QUADRATIC TOF DEPENDENCE
Let the time of flight (ToF) range per cell be ∆T over

the energy range ∆E, and the peak energy increment per
cell be δE. Let the index n denote iteration number, En be
the particle energy and tn, Tn be the absolute and relative
arrival times, respectively. Let τ0 be the cell traversal time
at the reference energy Er. Then tn = Tn + nτ0. The lon-
gitudinal motion in the linear-field FFAG accelerator may
be modelled by the following difference equations:

En+1 = En + δE cos(ωTn) (1)

Tn+1 = Tn + 4(En+1 − Ē)2∆T/∆E2 − δT2 . (2)

Here Ē = (Ê + Ě)/2, ∆E = Ê − Ě and ∆T =
δT1 + δT2. The time slip δT2 represents the fact that the
radio-frequency is synchronous with the orbital period at
Er, which is not ncessarily equal to the mean energy Ē.
These equations have served as a basis for analytic and nu-
merical studies for some time[5, 6]. Supplementary equa-
tions to describe effects of beam loading of the rf cavity
have been introduced[10], but are not considered here.

We introduce dimensionless variables: x = ωT and y =
(E − Ē)/∆E; and dimensionless parameters: s ≡ nω∆T ,
a ≡ (δE/∆E)/(ω∆T ), b ≡ (δT2/∆T ); and approximate
the motion by differential equations:

x′ ≡ dx/ds = (2y)2−b and y′ ≡ dy/ds = a cosx . (3)

The injection and extraction energies Ě, Ê correspond to
y = ∓1/2, respectively. The reference energy is the solu-
tion of Tn+1 = Tn, namely Er = Ē ± (∆E/2)

√
b where

the ratio b may take any value between 0 and 1.

Choice of operating point
The doublet (a, b) is the key parameter of the system.

In general, the choice of operating point will depend not
only on acceleration range (y̌ to ŷ) and acceptance, but also
up on a compromise between dwell time, acceleration effi-
ciency, and dispersion of arrival time (which leads to non-
linear emittance distortion). Matching of the input beam
depends also on (a, b).

The half-period τ , the dwell time from low to high mo-
mentum is of significance - particularly for decay losses.

τ =
∫

ds =
∫ x̂

x̌

dx/x′ =
∫ ŷ

y̌

dy/y′ . (4)

The average value of cosx along the path indicates the ef-
ficiency of acceleration and is also of interest: 〈cosx〉aτ =
(ŷ − y̌). The dispersion in dwell times, for particles with
differing values c of the hamiltonian, is measured by the
normalized second derivative C2 ≡ (∂2τ/∂c2)/τ/2 evalu-
ated at c = 0. The significance of C2 is that it leads, after
acceleration, to a spread in x, y values and so it must be
minimized. For brevity, let x = (x, y).

The observation that the incremental dwell time is pro-
portional to the square of the increment c, that is τ(a, c) =
τ(a, 0)[1 + C2c

2 + . . .], is key to minimizing bunch distor-
tion. The phase space about the reference particle must be
loaded in such away that |c| takes (almost) the same value at
all points on the perimeter of the ensemble. The optimum
aspect ratio and orientation angle for the phase space el-
lipse depends on (a, b) and the centroid x0, and must match
to the injected beam values.
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Figure 1: Phase space of quadratic pendulum: b = 1/4,
a = 1/48 (left) and a = 1/24 (right).

Hamiltonian and manifolds
Equations (3) above may be derived from the hamiltonian.

H(x, y, a, b) = (4/3)y3 − yb − a sinx . (5)

Let c be some particular value of the hamiltonian. De-
pending on (a, b, c) there are possibly two stable (libra-
tion) and three unstable (rotation) manifolds 2 for each 2π
range of x. In the former, motion is coperiodic in x and
y; and in the latter motion is periodic only in y, and x is
unbounded. We are interested in one of the three rotation
manifolds. For large momentum offset, there is no possibil-
ity of synchronism with the RF and the motion is uni-polar
in the ordinate y. However, depending on (a, b, c) there
is a serpentine channel in which the rotation is bi-polar in
y; and this manifold may be used for acceleration between
x = ±(π/2, 1/2). The realisation[8, 11] that this channel
does not open until a minimum critical value of a is ex-
ceded is essential to understanding the nonscaling FFAG.

2Small angle motion of a pendulum is an example of the first, whereas
more than 360◦ rotation of the pendulum is an example of the second. It
is worth noting that libration takes its root from the latin libra, for ‘scales’,
and not from the french libré for ‘free’.



The motion is synchronous at the two momenta ±ys,
ys ≡ √

b/2; and the direction of phase slip reverses
above/below these values. This is advantageous because
it allows the beam to cross the waveform crest three times
before the phase slips to values where it is decelerated.

In each interval ∆x = π there are two elliptic x1,2 =
±(π/2, +ys) and two hyperbolic x3,4 = ±(π/2,−ys)
fixed points3. When b = 0, the four fixed points col-
lapse to two. The condition to link the unstable fixed
points by a straight line segment with linear acceleration
is H(x3) = H(x4) with solution a = (1/3)b3/2; this is
the critical value of a for opening of the serpentine channel
and it is denoted by the symbol ac.

The value of the hamiltonian at the unstable fixed points
determines the separatrix for the serpentine channel; the
value is H = ±(a− b3/2/3) ∀b. Hence for bi-polar motion
|c| must be smaller than this amount. The central trajec-
tory passing through x = (0, 0) for c = 0 has special sig-
nificance. It gives both the range and minimizes the dwell
time; it is the reference path for asynchronous acceleration.

Explicit solutions
Let the cube roots of −1 be: r1 = −1, r2 = e+iπ/3

and r3 = e−iπ/3. A trajectory is a contour of constant
hamiltonian H(x, y) = c, with solutions y(x) given by:

yi = −[riw + b/(riw)]/2 , i = 1, 2, 3 (6)

w = 31/3[(c+ a sin x)+
√

(c + a sin x)2 − b3/9]1/3. (7)

Here y1 is the upper, y2 is the middle, and y3 is the lower
segment. How many of these solutions we shall need de-
pends on the values of a, b, c and the ranges of x. For a
centre range of x, momentum y is triple valued and all
yi, are needed; and for end ranges either y1 or y3 is suit-
able. The ranges are divided by the turning points (x̌, x̂)
of the motion y2, namely x̌ = − arcsin[(ac + c)/a] and
x̂ = arcsin[(ac − c)/a] with ac = b3/2/3.

No slip reversal, case of b=0
Setting b = 0 is a means to reducing the time dispersion;

in this case there is no reversal of the x′ slip direction. The
range of the channel is given by that of the central trajec-
tory, for which c = 0. The width of the channel depends
on paths terminating on the fixed points for which c = ±a.
The acceleration range extends between y = ±ŷ where
ŷ = (3a/4)1/3. At x = ±π/2, the momentum width of the
channel is δy = (3a/2)1/3 – but the useful width is less.

Half period, efficiency and dispersion The period
and expectation values will vary with the range over which
they are evaluated. Let us first form the values on the fixed
range x = ±π/2, which implies a varying momentum
range y = ±(3a/4)1/3.

For the central trajectory the total dwell time is

τu(a, 0) =
√

π Γ(1/6)/[(6a)2/3Γ(2/3)] . (8)
3In assigning coordinates to indices, we take the positive sign first.

On the same trajectory, the acceleration efficiency is found
to be independent of a.

〈cosx〉 = 2(3a/4)1/3/[aτ ] ≈ 0.823503 (9)

In order to find the time dispersion, we must compute
the half period for motions off the central trajectory. The
lowest order terms in a Taylor series about c = 0 are exactly

τu(a, c)
τu(a, 0)

=
[
1+

2
9

( c

a

)2

+
32
243

( c

a

)4

+
3136
32805

( c

a

)6

. . .

]

(10)
We have not yet considered whether these paths cross the

nominal acceleration range y = ±1/2. This first occurs
when a = 1/6 and the x-range extends between ±π/2.
For larger values of a, the range of x for which |y| ≤ 1/2
is smaller and we must reduce the corresponding ranges of
integration to x = ± arcsin[1/(6a)]. We refer to the dwell
time between these points as the restricted period τr:

τr(a, 0) =
1
a
F21

[
1
6
,
1
2
,
7
6
,

1
(6a)2

]
. (11)

Here F21 is the hypergeometric function. We may also ob-
tain the average value of cosine over the interval ŷ− y̌ = 1,
i.e. 〈cosx〉r = 1/[a τr] = 1/F21[. . .]. This quickly ap-
proaches unity for a > 1/4.

The dwell time for paths with c 	= 0 can be computed.
The expressions are lengthy; we present one special case.

τr(1/6, c) = τr(1/6, 0)
[
1 + 8c2 + (512/3)c4 + . . .

]
τr(1/6, 0) =

√
π Γ(1/6)/Γ(2/3) ≈ 7.28595 (12)

In general derivative C2 falls rapidly as a increases.

Two slip reversals, case b 	= 0
The working is facilitated by writing the solutions in the

form y(x(z)) where the relation between x, z depends on
the range of x, as given in the table below.

x range transformation z range
x̂ → +π/2 (c + a sin x) = +ac cosh z 0 → ẑ

x̌ → x̂ (c + a sin x) = ac sin z ∓π/2
−π/2 → x̌ (c + a sin x) = −ac cosh z ž → 0

Here ac = b3/2/3 and ž = −arccosh[(a − c)/ac], ẑ =
+arccosh[(a + c)/ac]. Over the end ranges z = [ž, 0]
and z = [0, ẑ], the two solutions become y1 = −y3

= +
√

b cosh(z/3), and the speed is given by v1 = v3 =
b[1 + 2 cosh(z/3)]. Over the centre range z = ∓π/2 the
three solutions become

y1 = +
√

b cos[(z − π/2)/3] (13)

y2 = −
√

b sin[z/3] (14)

y3 = −
√

b cos[(z + π/2)/3] , (15)

and the speed v ≡ (2y)2 − b is given by

v1/b = 1 + 2 cos[(2z − π)/3] (16)

v2/b = 1 − 2 cos[2z/3] (17)

v3/b = 1 + 2 cos[(2z + π)/3] . (18)



The connection between z and time-like s is the dwell
time, introduced in (4) and elaborated in (21). In gen-
eral the integral cannot be found in closed form, nor can
it be inverted for z(s). However, for the special case of
a = ac and c = 0, the relation may be constructed piece-
wise for yi thus: tanh[s1,3b/

√
3] = tan[(z±π/2)/3]/

√
3,

tanh[−s2b/
√

3] = tan[z/3]/
√

3.

Range and width of channel The range of the serpen-
tine channel is found by substituting x = ±π/2 in the cen-
tral trajectory y(x, c = 0). The range extends between

±y =
√

b cosh[(1/3)arccosh(a/ac)] . (19)

At the critical value ac the range spans y(ac) = ±√
b.

The paths emanating from the unstable fixed points con-
stitute the separatrix and define the momentum width at
x = ±π/2. Substituting values of the hamiltonian at these
points into y1(x, c), we find the lower and upper bounds to
be respectively y =

√
b and

y =
√

b cosh[(1/3)arccosh(2a/ac − 1)] . (20)

Channel width rises as b falls, but collapses when a = ac.

Half period, efficiency and dispersion In general, ex-
pressions for dwell time, acceleration efficiency and time
dispersion cannot be obtained in closed form, and numeri-
cal methods must be resorted to. However, there are inter-
esting and useful special cases.

Mathematically the simplest case is that the integration
ranges are y = ±√

b, or x = ± arcsin(ac/a), or z =
±π/2. For hamiltonian value c, the dwell time is

τ =
∫ x̂(c)

x̌(c)

dx

v(x, c)
=

∫ +π/2

−π/2

dz

v(z, c)

(
dx

dz

)
(21)

=
b3/2

3a

∫ +π/2

−π/2

dz

v(z)
cos z

cosx
= 2

√
b

3a

∫ +π/2

−π/2

dz
cos(z/3)
cosx(z)

.

When c = 0 the integral is obtained (almost) exactly:

τ(a, 0) = 4
√

b/(aπ)K[(ac/a)2] . (22)

The series expansion for K, the complete elliptic integral
of the first kind, converges quickly for b3/2 < a. On the
central trajectory, the acceleration efficiency is

〈cos x〉 = 2
√

b/[aτ ] = (π/2)/K[. . .] , (23)

which tends very quickly to unity because x ′ is smallest in
around the crest and largest near the zero crossing.

To find the dispersion we must find the dwell time for
paths with c 	= 0, namely τ(a, c) ≈ τ(a, 0)+

+
2
√

b c2

a(a2 − a2
c)2

(
2a2E [. . .] + (a2

c − a2)K[. . .]
)
+ . . . (24)

Here E , the complete elliptic integral of the second kind,
has argument (ac/a)2. The dispersion C2 is essentially the
coefficient of c2 in the Taylor expansion about c = 0. A

significant feature of the expansion is the resonant denom-
inator terms (a2 − a2

c). These occur because, for given a
value, the larger is b so the motion is closer to a fixed point;
and so we should expect the dispersion in arrival times to
increase with b.

Inevitably, attempts have been made to reduce the time
dispersion by flat-topping of the rf waveform using second
through fifth harmonic. This leads to modified values[11]
of the channel range, width and critical parameter a c.

Figure 2: Input (left) and output (right) phase space.
(a, b) = (1/12, 1/6), tracking range x = ±π/2.
Survival is 91.1% based on cuts of ±8% at Ê.
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Figure 3: Quadratic pendu-
lum, (a, b) = (1/12, 1/4).
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Figure 4: Phase space of
quartic pendulum, α = 1/3

Choice of operating point
Corresponding to the extraction/injection momenta y =

±1/2 is the position range x = ± arcsin[(1 − 3b)/(6a)];
and to y = ±√

b is x = ± arcsin(ac/a). These ranges
become identical when b = 1/4. In this case, the dwell
time, efficiency and dispersion over the restricted range are
given by (22,23,24) ∀a. Of course, to obtain expectation
values over the range x = ±π/2, one must integrate also
over the end ranges; but the contributions are usually small
unless a � b. The restricted range extends to ±π/2 when
a = (1 − 3b)/6; this cannot be satisfied for a > 1/6.

The unique values which simultaneously satisfies the
channel opening condition a = (1/3)b3/2 and the re-
stricted range condition a = (1 − 3b)/6 are (a, b) =
(1/24, 1/4). This forms a starting point from which to
set suitable acceleration parameters. In practise we need
a channel of finite width, which implies a > 1/24; and
the desire to optimise acceptance and dispersion suggests
a lowering of b. In the proposed muon FFAGs, the accel-
eration rate is limited to a ≤ 1/12 for technical reasons –
though this could be raised by reducing the bend per cell.
The choice b = 0 is ruled out since the acceleration range
is inadequate until a ≥ 1/6. The central trajectory spans



exactly x = ±(π/2, 1/2) for (a, b) = (1/12, 1/6) and it is
anticipated that the optimum operating point is in the vicin-
ity of these values. As example, figure 2 shows the result
of particle tracking a 0.5 eV.s phase-space ellipse over 7.5
turns for a 10-20 GeV muon FFAG with 90 cells.

QUARTIC, ETC, PATH DEPENDENCE
Let y ∝ (E − Ē). Consider the model equations:

dx/ds = y2(1−α2y2)− 1 and dy/ds = λ cosx . (25)

This is a complicated system with two free parameters and
eight fixed points [x1,2,3,4 = ±(π/2, p),±(π/2,−q) and
x5,6,7,8 = ±(π/2,−p),±(π/2, q)]. For brevity we restrict
the discussion. Solutions of x′ = 0 are the synchronous
momenta; values are ys = ±p,±q with q > p > 0 :

p =
√

2/
√

1 + w , q =
√

2/
√

1 − w , w =
√

1 − 4α2 .

The critical value λ for which a channel encloses the inner,
stable fixed points ±(π/2, p) increases with α. There are
solutions for the condition to link the unstable fixed points
±(π/2,−p) over the range α = [0, 1/2] and end-point val-
ues are λ = 2/3 and λ = 8

√
2/15. For larger values of λ

the channel attains a finite width.
The condition, H(x5) = H(x6) = H(x7) = H(x8),

to link all the unstable fixed points in a ladder has a unique
solution: α = 1/3, λc = 2

√
3/5 ≈ 0.69282. In this case

q, p =
√

3(3 ±√
5)/2 ≈ 2.80, 1.07 and a bi-serpentine

channel emerges with twice as many meanders as in the
quadratic case. The beamlet is accelerated between x =
±(π/2,−2

√
3). Four reversals of phase slip is seen as ad-

vantageous; because it allows the beamlet to cross the crest
of the waveform five times before the beam slips to values
where deceleration occurs. If λ is increased well beyond
the critical value; then the channel appears almost vertical.

AVF Cyclotron
The quartic system yields an acceleration channel which

begins to be reminiscent of that seen in experimental mea-
surements of the phase histories versus energy (or radius)
of accelerating and decelerating beams in the TRIUMF
cyclotron[13]. Based on that observation, Baartman[14]
proposed that the phase wiggles owe their existence to
a ladder of fixed points. (If the machine were perfectly
isochronous, the paths would be vertical with no wiggles.)
Calculations by Rao[14] verified this proposition and sug-
gests there to be at least eight fixed points in the ladder.
Thus, the asynchronous acceleration principle devised to
predict the properties of the linear-field non-scaling FFAG
is seen to be perfectly at home in the world of (nearly)
isochronous cyclotrons where there is the relative freedom
to adjust the magnet lattice and field profile by shims and
correction coils and thereby produce a relative time of flight
variation that is characterised by a high order polynomial.

Fig. 5 was generated with the computer program COMA,
using transfer matrices computed by CYCLOP from a mag-

net field model of the TRIUMF cyclotron that is a compos-
ite of the basic measured field, measured coil contributions
and a mathematical adjustment of the coil currents to make
the computer model accelerate beam to 500 MeV in the ma-
chine midplane. The D-voltage is 91 kV, and the wave crest
is at 90◦. Particle initial energies were arranged between
50 and 500 MeV, while the starting RF phase angle was
adjusted artificially in order to get nice looking islands and
a separatrix. Although Fig. 5 is a calculation, the coarser
features have been experimentally verified[13].

Figure 5: Phase history for TRIUMF cyclotron
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