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Abstract

Magnetic channels are used in the extraction system of su-
perconducting cyclotrons for focusing and extracting the
high energy beam. In order to preserve the beam quality,
the field gradient produced by the channels should be con-
stant. We have evolved a procedure based on the linear pro-
gramming technique for optimizing the geometry of mag-
netic channels. With this, we have reduced the deviation in
the field gradient not only in the median plane but through
the beam aperture.

1 INTRODUCTION

In high energy cyclotrons, especially in superconducting
cyclotrons, in addition to electrostatic deflectors, passive
magnetic channels are used for extracting the beam. These
channels use iron bars to lower the magnetic field in the
extraction region thereby helping the extraction process.
These also generate a positive field gradient (opposite to
radially defocusing fringe field gradient) and so provide a
radial focusing force. At Variable Energy Cyclotron Centre
in Calcutta, a K500 superconducting cyclotron, similar to
the one at Michigan State University[1], is under construc-
tion. The extraction system uses 9 magnetic channels[2].

Typical magnetic channels consist of three iron bars, one
placed at a lower radius and two other at a higher radius
with respect to a beam orbit (Fig. 1)[3]. In the strong field
of the superconducting cyclotron these bars become mag-
netically saturated. The single bar on the left reduces the
field near it and the other two bars on the right increase the
field at higher radii. The combined effect is a negative field
in the centre of the channel and a radially focusing gradient
within the aperture occupied by the beam. Such magnetic
channels have been used in the superconducting cyclotrons
at Chalk-River[4], NSCL at MSU[5] and at Milan[6].

In order to preserve the beam quality, it is necessary that
the field gradient of the channel be constant along the radial
direction not only in the median plane but also in the planes
above and below it, because the beam has finite radial and
vertical dimensions. The field gradient is determined by
the dimensional parameters of the channel geometry. Re-
cently we developed a method[7], based on the linear pro-
gramming technique, to optimize the channel parameters
for reducing the deviations of the field gradient. We con-
sidered only purely rectangular bar shapes there. Here we
have improved and used the method to further improve the
field quality of the channel by considering other shapes.
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Figure 1: Channel geometry showing various dimensional
parameters.

2 CALCULATION OF MAGNETIC
FIELD

Since the iron bars are completely saturated, the field due to
the bars is the same as that due to current sheets on the ver-
tical surfaces of the bars. Thus Bz(x, y), the vertical com-
ponent of the field at a point (x, y) due to a bar of thickness
t and height 2h, placed at a distance d from the origin is

Bz(x, y) = A

[∫ h−y

−h−y

(d − x)
(d − x)2 + y2

dy−

∫ h−y

−h−y

(d + t − x)
(d + t − x)2 + y2

dy

]
(1)

where A = −3.375 kG in the case of iron saturated to 21.4
kG. This can be simplified to

Bz(x, y) = A
[
tan−1 h − y

d − x
− tan−1 h − y

d + t − x
+

tan−1 h + y

d − x
− tan−1 h + y

d + t − x

]
(2)

One can add the field contribution by the three bars (Fig. 1)
to get the total field as

Bz(x, y) = A

[
tan−1 h3 − y

d1 − x
− tan−1 h1 − y

d1 − x
−
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]
(3)

We want that the field due to the channel should have
a specific value B(0, 0) at the chosen centre and have a
chosen field gradient G, i.e.,

Bz(x, y) = B(0, 0) + Gx (4)

for all y. The actual field of the channel will somewhat
deviate from this and our endeavour is to minimize the de-
viation by optimizing the channel geometry.

3 LINEAR PROGRAMMING METHOD

The parameters which have been optimized are
h, h1, h2, h3, d1, d2 and d3. As seen from eqn.( 3),
Bz(x, y) is not a linear function of these parmeters and so
is not directly amenable to linear programming. So we first
linearize the field in a small range. In the neighbourhood
of any set of the parmeters we can expand the function
Bz(x, y) to get

Bz(x, y) = Bz0(x, y) + ∆h

(
∂Bz
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)
0

+∆h1

(
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)
0
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(
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)
0
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(
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)
0
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(
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∂d1

)
0
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(
∂Bz
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)
0

+ ∆d3

(
∂Bz

∂d3

)
0

(5)

where Bz0(x, y) is the field at (x, y) with the initial set
of parameters. This is linear in terms of the increments
∆h, ∆h1 etc. and so one can now appply linear program-
ming to minimize | Bz(x, y)−B(0, 0)−Gx |. We use the
constraint that the deviations from the design field profile
should be smaller than the tolerance for −xm ≤ x ≤ xm

where 2xm is the maximum beam width in the horizontal
plane. The constraint is used at another parallel plane also
with y = ym where 2ym is the vertical width of the beam.
We have taken xm = 0.3 cm and ym = 0.2 cm. This is
done at a number of points, x1, x2, ... within −xm to xm to
get the set of constraints as

Bz(x1, 0) − B(0, 0) − Gx1 < Tolerance

Bz(x2, 0) − B(0, 0) − Gx2 < Tolerance

.................................

Bz(x1, ym) − B(0, 0) − Gx1 < Tolerance

................................. (6)

Since [Bz(x, y) − B(0, 0) − Gx] can be either positive or
negative, we have to use another set of constraints

−Bz(x1, 0) + B(0, 0) + Gx1 < Tolerance

................................. (7)

We have also put restrictions to the ranges within which
the parameters are allowed to vary. The simplex tech-
nique is used for solving this problem of for minimizing
Tolerance. The standard simplex technique maximizes
the value of a variable. Since we want to minimize a vari-
able, we do it by introducing a variable Tol given by

Tolerance = Tolmax − Tol

where Tolmax is an arbitrarily large constant. Tol can
now be maximized for minimizing Tolerance. The sim-
plex algorithm gives a set of corrections ∆h, ∆h1 etc. We
do the calculation in an iterative manner, in which a small
fraction of the correction is applied at each step. It is nec-
essary to specify whether one wants to increase or decrease
any particular parameter. If in any trial a parameter remains
unchanged, its sign is reversed in the next trial.

4 RESULTS AND DISCUSSION

We started with the geometry of the channel used in K500
machine at MSU[6] (Table 1). It has B(0, 0) = −1.214
kG and G(0, 0) = 3.3 kG/cm. Fig. 2 shows the geometry
of the optimized channel. The dotted geometry is that of
the unoptimized one. We have not tried to change the pa-
rameters l1 and l2 of Bar 1 as these will change the field
appreciably inside the cyclotron. However, the other six
parmaters have little influence on the field on the left of
Bar 1 and have been optimized.

Fig. 3(a) compares the deviation of the field from the
design field profile. Fig. 3(b) shows that the deviation in
gradient as a function of x. The deviation in the optimized
channel comes down to 0.20 kG/cm from 0.83 kG/cm in
the unoptimized channel. The superiority of the optimized
channel is obvious. The optimization also decreases the
values of the unwanted higher harmonic field components,
responsible for the nonlinear effects. The optimized ge-
ometry gives a variation of 2.6 kG/cm2 in the sextupolar
component compared to 9.1 kG/cm2 in the unoptimized ge-
ometry (Fig. 3(c)).

Fig. 4 compares the estimated beam ellipses when a
beam of emittance of 9 mm.mrad passes through the 9 opti-
mized and unoptimized channels. The ellipse gets distorted
appreciably by the unoptimized channels and the overall
emiitance increases by about 30%.
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Figure 2: Optimized channel geometry compared with the
MSU channel.

Table 1: Channel dimensions and field quality

Parameter Unoptimized Optimized
h (cm) 0.625 0.681
h1 (cm) 0.625 0.603
h2 (cm) 0.625 0.724
h3 (cm) 1.25 0.827
d1 (cm) 0.625 0.198
d2 (cm) 0.625 0.652
d3 (cm) 0.9375 1.10
l1 (cm) 0.625 0.625
l2 (cm) 0.9375 0.9375
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Figure 3: Comparison of the deviations in the (a) field, (b)
field gradient, and (c) second gradient of the field. The
solid curves are for the optimized channel and the dotted
curves are for the unoptimized channel.
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Figure 4: Comparison of beam ellipses as the exit of the 9
optimized and unoptimized channels.

[5] M.M. Gordon, D.A. Johnson and V. Taivassalo, MSU Cy-
ax. ∆G (kG/cm) 0.840 0.206

The present method can be applied to other simple g
etries also, e.g., in a channel which only lowers the fie

t does not produce any gradient or a channel of any r
ired field profile.
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