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Abstract

A group of codes has been developed using a new method
for designing the pole profile of a quadrupole magnet. In
this method the error harmonics in the quadurpole mag-
netic field are optimized to get a pole-profile with constant
width yielding a very high field quality. The code adopts
an iterative procedure to optimize the error harmonics and
visualize the pole-profile. It also calculates and plots the
magnetic field quality. The method can be extended to de-
sign the pole profiles of other multipole magnets also.

1 INTRODUCTION

Quadrupole magnets are one of the most essential elements
in any beam line transporting charged particle beams. In
many applications, especially in high resolution beam lines
and in synchrotrons, a highly pure quadrupole field is re-
quired in order to preserve the beam quality as the beam
traverses through the quadrupole.

The field quality of a room-temperature iron magnet de-
pends mainly on the profile of the pole. The ideal pro-
file of a quadrupole is hyperbolic extending up to infin-
ity. In realily, however, one has to settle for a finite pole
width by truncating the pole which gives rise to field er-
rors. There are various ways of reducing the field errors in
a quadrupole. One can use a circular pole and optimize the
radius to reduce the field error [1,2]. For obtaining a bet-
ter field quality people use various other pole profiles [3,4].
Some people use hyperbolic profile terminated by shims at
the coil window. Some others truncate the hyperbolic pro-
file with straight lines at the outer edges. Poles consisting
entirely of plane surfaces are also used [6,7].

In the design of the pole profile of a magnet, the general
procedure is to choose a pole profile and calculate the field
produced by that profile with the help of standard codes like
POISSON, SUPERFISH etc. The errors or the deviations
from the ideal field are then estimated. If the errors are not
smaller than the chosen value, one changes the geometrical
parameters of the pole to repeat the procedure.

Another way of designing the pole of a quadrupole was
developed by Sarma and Bhandari [8] in which one first
chooses the tolerable error in the field and then determines
the profile which will keep the error below the tolerance.
Thus in this method one is not burdened with the task of
selecting the geometrical parameters a priori. This method
gives a smaller pole width than that obtained with the other
methods.

Based on the new method, now we have developed an al-
gorithm which calculates the pole profile of a quadrupole of
required field tolerance and optimizes the pole width also.
This report discusses the iterative method of profile opti-
mization and describes the codes which design the profile
and ascertains the field quality by calculating the field by
POISSON code for the required field level.

2 METHOD

The equipotential lines for a pure quadrupole field are given
by

C2r
2 cos(2θ) = 1 (1)

where C2 is the coefficient in the harmonic expansion
of the magnetic potential. The above equation gives the
pole profile for magnets of low strength and electrostatic
quadrupoles. In practical magnets the potential equation
contains higher harmonics due to finite termination of the
pole

C2r
2 cos(2θ)+C6r

6 cos(6θ)+C10r
10 cos(10θ)+ .... = 1

The C6- and C10-terms are the major error terms and have
the major contribution to the field error. So we try to find
the profile by taking C6 = C10 = 0. Thus the profile
equation becomes

C2r
2 cos(2θ)+C14r

14 cos(14θ)+C18r
18 cos(18θ)+... = 1

In Cartesian coordinates this becomes,

C2Re[(x + iy)2] + C14Re[(x + iy)14]

+C18Re[(x + iy)18] + ... = 1 (2)

For a given set of harmonic coefficients (C2, C14, C18, ...)
the locus of the point P (x, y) gives the pole profile. We
terminate at C30 because the higher order terms have little
influece on the field in the region of interest. As we wish to
find the solution set {Yi} for a given set {xi}, (i = 1, N),
we write the above equation in terms of a polynomial in y
as

f(y) = k0+k2y
2+k4y

4+k6y
6+...+k28y

28+k30y
30 = 1

(3)
where k’s are function of x and C2, C14, C18, ..., C30. Here
f is an explicit function of y and an implicit function of x
and C’s. The solution set Yi, hence, can be written as a
function of C’s as

Yi = Yi(C2, C14, C18, C22, C26, C30) (4)
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The harmonic coefficient C14 has now the dominant con-
tribution to the error in quadrupole field (in absence of
the abandonned coefficients C6 and c10). This is the term
which mainly determines the pole width and, obviously,
the field quality. In designing a quadrupole magnet for
any application, one has to have a specific field quality and
in our method this is set by fixing C14. We then get the
optimized profile by varying the other higher harmonics
C18, C22, C26, C30. As equation (4) is nonlinear, we lin-
earize it by differentiating.

∆Yi =
∂Yi

∂C18
∆C18 +

∂Yi

∂C22
∆C22 + ..... (5)

we get N equations like eqn.(5) for N points x i. In the
matrix form we write,

∆Y = A∆C (6)

Eqn.(6) gives the variation in the profile for a given varia-
tion in the harmonic coefficients C18, C22, C26, C30. A is
therefore a (4 × N) matrix. Conversely, if we vary a given
profile we can find out the corresponding variation ∆C in
harmonic coefficients.

∆C = A−1∆Y

But the matrix A is not a square one. So ∆C is actually
calculated from [9]

AT ∆Y = AT A∆C

∆C now comes out to be

∆C = (AT A)−1AT ∆Y (7)

These variations ∆C are then taken into account in eqn.(3)
and a new profile is generated.

We want a profile which has a small pole width and is
constant for higher x-values so that energizing coils can
be accomodated easily. The optimized values of the har-
monics are found from eqn.(7). The calculation however is
done iteratively.

3 DESCRIPTION OF CODE

The code is interactive and Windows based one comprising
of four programs:

1. Pole profile optimization (PROG1): It finds out iter-
atively an optimized pole-profile with a given field quality
(specified by the harmonic coefficient C14) and minimum
width.

2. Pole profile visualization (PROG2): It visualizes the
pole profile at any stage of iteration so that progressive im-
provement in the profile can be tracked.

3. Generating the input file of POISSON (PROG3):
This program generates the input file to the POISSON for
the optimized profile so that the magnetic field data can be
caluculated for this profile which will be used in the next

program. This program also visualizes the full quadrupole
profile.

4. Field quality determination (PROG4): The error anal-
ysis is done in this program and hence the field quality is
calculated and shown.

3.1 PROG1

In PROG1 we give the desired field quality (specifying
C14) and the set of points xi (i = 1, N) where optimiza-
tion is to be done. Generally we desire that for lower val-
ues of x the locus of y(x) be nearly hyperbolic and for
larger values of x it is constant. We choose xi values on
the pole stem as it is the pole width which is to be opti-
mized by the program. In fact only the first point x1 and
N are to be specified. The other points are taken at reg-
ular intervals already specified within the program. Ini-
tially the higher error harmonics are set to zero, i.e., we put
C18 = 0, C22 = 0, C26 = 0, C30 = 0. The pole profile
(e.g. profile-1 in Fig.1) is then calculated by solving the
equation

f(y; C, x) − 1 = 0 (8)

One needs to solve this equation repeatitively and it is done
by Gauss-Jordan method. The initial guess values for y1 is
taken from a table already provided in the program which
is prepared by trials for some specific values of field qual-
ity and x1. PROG1 calculates the initial profile yi at the
specified points xi. Then a small variation in the profile
∆yi is considered, e.g., profile-2 in Fig.1) is the varied
profile. The corresponding variation in the higher harmon-
ics (∆C18, ∆C22, ∆C26, ∆C30) are calculated by solving
eqn.(7). A small fraction (r) of these error harmonics is
fed back and the new profile is calculated again by solv-
ing eqn.(8) with specified C14 and Cj = Cj + r∆Cj , for
j = 18, 22, 26, 30 and r = 0.05 to 0.25 generally. A fur-
ther variation in this new profile is considered and the same
process is done iteratively until the final optimized profile
(shown as profile-5, 6 in Fig.1) with specified C14 and a
constant optimum width is achieved. Once the optimiza-
tion is complete pole profile becomes stable and no further
variation is achieved (see profile-4).

3.2 PROG2

Throughout the above optimization process the intermedi-
ate profiles can be visualized by PROG2. It is an inter-
active program and uses Windows graphics. In fact, the
whole optimization process is to be done interactively by
running PROG1 and PROG2 simultaneously. Fig.1 shows
the intermediate profiles after different iterations and the
finally optimized profile.

3.3 PROG3

PROG3 makes use of the finally optimized profile and gen-
erates the input file to POISSON for the desired field value
(B0, to be given as input). Then with the help of POISSON
and SF7 the magnetic field is calculated for this optimized
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Figure 1: Improvement of field profile after various itera-
tions

profile. It is to be noted that for higher fields the field er-
ror calculated by POISSON code are higher than that by
our code. It is because at higher fields the pole profile no
longer remains an equipotential. One can easily circum-
vent this problem by initially choosing a lower tolerance
than desired.

3.4 PROG4
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Figure 2: Comparison of the error field of the new
quadrupole with that of a circular quadrupole. Half-
aperture is 5cm.
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ror analysis is done with this program and the field qu

is calculated. It fits the error harmonics with χ2 fitt
d calculates the deviation of the field data from the id
adrupole field and visualizes it on a graph (Fig.2).

4 DISCUSSION

e group of codes described above shows a way of d
ning quadrupoles of highly accurate field generally
ired in synchrotrons and storage rings where the bea
sses through the magnets many times. We emphas
at the pole width obtained by the above method remai
all compared the widths generally used. One can read

odify the codes for designing other types of magnets li
xtupoles and octupoles.
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