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Abstract 
As a versatile accelerator, especially for application 

with high repetition and high current beams, the FFAG 
(Fixed Field Alternating Gradient) synchrotron attracts 
growing attention. We will discuss the design procedure 
and beam dynamics study from a modern view based on 
recent progress in high-energy accelerators. Comparison 
between brute force tracking with direct use of 3D field 
mapping data and a newly introduced way modeling the 
entire field region with a collection of thin elements is 
presented. 

1  INTRODUCTION 
Optics design and dynamics study of FFAG (Fixed 

Field Alternating Gradient) accelerators involve, finding 
the closed orbit, calculation of linear lattice functions, 
estimate of parameter dependence, and search of dynamic 
aperture. Unlike a synchrotron and other accelerators, 
large nonlinearities are inherent in FFAG in order to make 
the transverse tune constant in a large momentum range. 
Higher order optical effects such as amplitude dependent 
tune shift have to be estimated in the early design stage. 
Since the first development of FFAG in the MURA days, 
there has been little serious activity. We will discuss the 
application of modern tools to FFAG study, for example, 
the construction of a transfer map for analysis and perhaps 
tracking studies. 

2  DESIGN OF FFAG OPTICS 

2.1 Some Basics of FFAG Optics 
In a beam-focusing channel using the alternating 

gradient principle (or strong focusing principle), the 
focusing properties such as phase advance per unit cell 
depend on particle momentum. That is called the 
chromaticity. It cannot be corrected if the system is a 
purely straight channel. However, in a circular channel 
with bending magnets, the closed orbit, meaning the orbit 
without betatron oscillations, depends on particle 
momentum. The derivative of the closed orbit with 
momentum is called the dispersion function. Using the 
dispersion function and nonlinear magnetic elements, we 
can make the chromaticity zero. For example, if we install 
a sextupole magnet where the dispersion function is finite, 
the closed orbit of a higher momentum particle is shifted 

outwards, and linear focusing strength expanded at the 
sextupole with respect to the closed orbit is added. In the 
same way, linear focusing strength due to the sextupole 
for a lower momentum particle is subtracted. 

The FFAG principle, more strictly speaking its scaled 
version, assures the compensation of chromaticity over a 
large momentum range just by shaping the bending 
magnets to obtain median plane fields as follows 

where r is the radius from the machine center, Bi and ri are 
the bending field and the radius corresponding to injection 
momentum. The F depends on a type of FFAG. The so-
called radial sector type satisfies 

and spiral sector type does 

where θ is azimuthal angle. With using those fields, two 
conditions that give the zero chromaticity can be 
described as  

• Geometrical similarity. 
• Constancy of n at corresponding orbit points.  

where p is momentum K is the local curvature, K0 is 
average curvature, and ϑ  is generalized azimuth. 

In alternating gradient magnets, bending fields with 
opposite signs are positioned alternatively, which makes 
the closed orbit scallop shape as shown in Fig. 1. Since 
the normal bending magnet (it bends orbit inward) gives 
horizontal focusing, it is called a focusing (F) bend. The 
reverse bending magnet is called a defocusing (D) bend. 
Notice that the closed orbit does not go through at a 
constant B field, so that the local curvature is varying 
along the orbit. 

A radial sector type shown in Fig. 1 is in its original 
configuration. As a variation, a radial sector with triplet 
focusing structure is also considered [2]. That can be 
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obtained by splitting the D bend (smaller magnet) into 
two and making them adhere to the adjacent F bends. As a 
result, longer straight sections between two D bends are 
obtained. Also field-cramping effects are expected 
between F and D bends. 

 

 
Fig 1: Cited from Ref. 1 (first electron FFAG model). 
Larger magnets have normal bending fields and bend a 
particle inward; smaller ones have reverse bending fields 
and bend a particle outward. As a result, the central orbit 
has a scallop shape. 

 

2.2 Design Procedure 
Now we describe the optics design in a FFAG 

accelerators. The procedure certainly resembles that of an 
ordinary synchrotron and a cyclotron, but some aspects 
deserve special emphasis. We limit ourselves to a scaled 
FFAG, namely one that satisfies the zero chromaticity 
condition. The necessary items should be the following: 

• Find the closed orbit. 
• Calculation of linear lattice function. 
• Estimate parameter dependence. 
• Search for the dynamic aperture. 
In a FFAG synchrotron, the ideal closed orbit is not just 

a combination of straight lines and arc of circles as we 
have seen above, while it is usually the case in an ordinary 
synchrotron. A sector focus cyclotron is somewhat similar 
to the FFAG, but the variation of local curvature in a 
magnet is much smaller since the field index n cannot be 
as large as FFAG to keep the isochronous condition. 
Ultimately, numerical integration is necessary to obtain 
the closed orbit. 

Although a closed orbit cannot be quickly computed, 
focusing properties such as phase advance and betatron 
amplitude functions are estimated with a linearized model 
of the rather complicated magnet. In the model, we 
assume constant curvature in F and D bends, respectively. 
At the same time, we assume that the linear gradient along 
the orbit is constant, so that both bending magnets 
becomes just like a combined function magnet with a 
bending field and a constant quadrupole field. One thing 
we cannot ignore even in this simplified model is the edge 

focusing which can be the primary focusing strength in the 
vertical direction. The linearized orbit with some 
geometrical quantities is depicted in Fig. 2. A standard 
synchrotron lattice design code such as SAD [3] is then 
employed to obtain a rough idea of focusing parameters 
[2]. 
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Fig 2: One half sector of the triplet radial sector FFAG. In 
order to estimate the closed orbit and focusing properties 
in a quick manner, the magnetic field is simplified 
(linearized) so that the arc has a constant curvature in F 
and D bends, respectively. Linear focusing strength is also 
the same along the orbit. 

 
Nonlinearities in FFAG are not just perturbations, but 

the main components to force zero chromaticity for a 
large momentum range, say a factor of three. That is quite 
different from an ordinary synchrotron where zero 
chromaticity is only assured for a few percent deviation of 
momentum at most. Such strong nonlinearities make the 
transverse tune a function of betatron amplitude even at 
small amplitude. The condition of zero chromaticity is 
also sensitive to the realistic fringe fields and that cannot 
be taken into account in the linearized model. Based on 
the linearized model, rough parameters such as the field 
index and the azimuthal angle of each magnet are 
determined. However, a 3D calculation of the magnetic 
field and numerical integration using them are necessary 
at some point to accurately model the machine. That is an 
iterative process. Nowadays, it is straightforward to 
calculate the 3D field mapping using a code like TOSCA. 
We will discuss numerical integration in more detail. 

The final step is to search for the dynamic aperture just 
to make sure that it is large enough. In the horizontal 
direction, the physical aperture limit does not exist in 
practice. We can stack beams filling up a dynamic 
aperture. Therefore an enlargement of dynamic aperture 
directly ends up with higher particle intensity. 

2.3  Numerical Integration 
For each item, with the exception of the calculation of 

the linearized model, step-by-step integration is eventually 
necessary to make an accurate design for construction. 



The most primitive way is a direct numerical integration 
using interpolated magnetic fields based on the 3D grid 
data by TOSCA. For example, in order to find the closed 
orbit, first we guess phase space coordinate where the 
closed orbit most probably exists. Then, we launch a 
particle, integrate it step by step, and see if the particle 
comes back to the same position after one turn or one 
minimum period. Usually the first guess does not match 
the closed orbit. Then what we do is to track a particle for 
more turns. Unless the tune is a rational number, 
trajectory in a phase space becomes ellipse. The center of 
the ellipse should be more probable position of the closed 
orbit. An iterative process is necessary. 

 

 
Fig. 3: Floor plan of the 12 sectors of FFAG in PTC. Each 
identical sector (a trapezoid) is divided to many thin 
elements based on the calculation of 3D magnetic fields. 

 
The similar step by step integration and iteration can be 

more systematically performed with PTC (Polymorphic 
Tracking Code) package recently developed by Forest and 
Schmidt [4]. Instead of interpolating the 3D field data 
from adjacent grids every time step, we first replace the 
entire 3D field mapping of one period with a bunch of 
thin elements aligned in longitudinal direction. In each 
thin element, three magnetic field components are fitted 
either globally or locally so that its derivatives with 
respect to the coordinates exist to the necessary order. 
Once the 3D fields are represented in that manner, real or 
Taylor type (since it is determined at run time and 
therefore it is called polymorphic) can be integrated. 

Let us take the same example, namely finding a closed 
orbit. Now suppose the first guess X of the closed orbit is 
different from the goal by ε. By definition of a closed 
orbit, X+ε does not change by the transformation T, where 
T is succession of a thin element operation, 

( ) εε +=+ XXT , 
By taking the first order only, 
 ( ) ,εε +=

∂
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Of course, iteration is still necessary until ε becomes 
small. 

In fact, the primary virtue of taking a polymorphic code 
is its ability to make normal form. Once the 3D magnetic 
field mapping is replaced with a bunch of thin elements 
and a transformation of phase space coordinate including 
its derivatives through those elements is obtained, then we 
can construct normal form that is given by 
 AMAR ��

1−= , 
where M is the one-turn (one-period) map, A is the 
normalizing transformation, and R is a rotation.  

Using that transformation, the β-function is nothing but 
 2

12
2

11 AA +=β . 
Parameter dependence such as tune as a function of 
transverse coordinates as well as momentum spread and 
of their higher orders are obtained automatically. In PTC, 
parameters are not just phase space coordinates, but other 
machine parameters such as the strength of magnetic 
fields. 

2.4  Trajectory in Phase Space 
We will compare the tracking results of step by step 

integrations and Taylor map tracking. As an example, 150 
MeV FFAG under construction [5] is modeled. The 
kinetic energy is fixed at 27.4 MeV. The operating point 
is (3.80, 1.19). Since the 3rd order structure resonance is at 
νx=4, strong resonance structure in phase space appears in 
Fig. 4. Dynamic aperture is roughly estimated as the 
maximum closed curve. That is the result of step by step 
integration. Figure 5 shows the horizontal tune depending 
on amplitude. 
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Figure 4: Step by step integration result. The 4th order 
Runge-Kutta method is employed and horizontal phase 
space is depicted. 

 



Fig. 5: Amplitude dependence of the horizontal tune. Five 
points correspond to surviving particles in Fig. 4. 

 
Now, Fig. 6 shows tracking result of PTC with the 

same machine parameters. The scale is about the same as 
Fig. 4. There are two different kinds of trace. One whose 
color is red is the result directly from the map after 
successive integration of thin elements. The yellow color 
corresponds to a generating function map. The significant 
width in the red trace disappears in the yellow one. The 
phase space behavior and dynamic aperture calculated by 
step-by-step integration turns out not so different from the 
Taylor map in this particular example. 

 

 
Fig. 6: Tracking results from the map based on successive 
integration of thin elements. The scale is about the same 
as Fig. 4. 

3  SUMMARY 
Using a recently developed the PTC package by Forest, 

a FFAG synchrotron was modeled and the results were 
compared with a brute force step-by-step integration. In 
fact, it turns out that brute force tracking is not so 
inaccurate in that particular example although the tracking 
takes more time and the book keeping is more 
cumbersome. We plan to extend the FFAG modeling with 
PTC to handle acceleration where the closed orbit shifts 
as momentum increases. 
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