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Abstract

A comprehensive examination of theoretical models for
the friction force, in use by the electron cooling commu-
nity, was performed. Here, we present our insights about
the models gained as a result of comparison between the
friction force formulas and direct numerical simulations,
as well as studies of the cooling process as a whole.

INTRODUCTION

A theoretical calculation of the energy loss by an ion
passing through a cloud of electrons in an external mag-
netic field has been extensively studied by the plasma com-
munity (see, for example, recent Refs. [1, 2] and references
therein). A treatment is typically done via two complemen-
tary approaches: binary collision model and dielectric lin-
ear response treatment.

In the presence of a finite-strength magnetic field, both
analytic approaches have complications. The binary colli-
sion treatment does not provide a closed form solution any-
more, because the relative motion and the center of mass
motion are now coupled. With some approximations, the
closed form expressions for the friction force can be ob-
tained [3, 4]. For arbitrary magnetic field strength, numer-
ical simulations are required. In the dielectric treatment,
there exists a closed form expression for the friction force,
but it requires numerical evaluation of multi-dimensional
integrals with strongly oscillatory integrands [5, 6]. A prac-
tical expression, in the form of a one-dimensional integral,
is possible in the limit of a very strong magnetic field [7, 8].

A variety of theoretical models for the friction force have
been developed [3]-[10]. Unfortunately, the available ex-
pressions make various approximations, and the discrep-
ancy between theory and experiments can be large.

In recent years, numerical simulations have been used
to explore in detail the collisions between ions and mag-
netized electrons for arbitrary magnetic field strengths [2].
However, to the best of our knowledge, a systematic com-
parison with the friction force formulas used by the elec-
tron cooling community has not been reported.

Recently, we reported numerical studies [11] with the
VORPAL code [12], which includes an algorithm to ex-
plicitly resolve close binary collisions [13]. Validation of
VORPAL results at least for some limiting cases with nu-
merical integration within the BETACOOL code [14] was
also presented [11].
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Following a previous report, we explored various aspects
of the magnetized cooling. Some insights are summarized
in this paper.

MODELS AND LIMITATIONS

For the parameters of the cooler discussed in this paper,
the dominant contribution comes from adiabatic collisions
of the magnetized type. In the limiting case of a very strong
magnetic field a practical expression for such adiabatic col-
lisions, in the form of a one-dimensional integral, was ob-
tained by Derbenev and Skrinsky [5, 7]:
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an electron “Larmor circle”, with the transverse electron
velocities assumed to be completely suppressed (“adia-
batic” or “magnetized” collisions). The actual values of the
magnetic field and transverse rms electron velocity spread
enter only via the cutoff parameters under the Coulomb
logarithm, which is defined as LM = ln(ρmax/ρA

min).
Here, a minimum impact parameter of adiabatic collisions
ρA

min is defined as ρA
min = max(ρL, Ze2/mU2

A), where
ρL = mcΔe,⊥/(eB) is the radius of Larmor rotation.

The function in Eq. (1) has asymptotes in the region of
small (V � Δe,‖) and large (V � Δe,‖) ion velocities,
where Δe,‖ is the rms longitudinal spread of the electrons.
Such asymptotic expressions [7, 9] are widely used for the
estimates of the magnetized cooling force in various sce-
narios.

The asymptotic limits of Eq. (1), while useful qualita-
tive guides, are not sufficient for the design of the electron
cooling system, where an accurate description of the fric-
tion force is needed for a large range of relative velocities
between the ions and electrons. Our computational results
[11] showed that the use of such asymptotic limits to con-
struct a friction force expression to cover a full range of
relative velocities [9] leads to a significant overestimate of
the force. This is the case even when the values of the mag-
netized logarithm are significant. For example, VORPAL
simulations, presented in Fig. 1, are done for the following
parameters: B=5T, time of interaction in the beam frame
τ =0.4 ns, the rms velocity spreads of the electron beam
Δe,⊥ = 4.2 · 105 m/s, Δe,‖ = 1.0 · 105 m/s, Z=79 and the
density of electrons in the beam frame ne = 2 · 1015 m−3.
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Figure 1: Longitudinal component of the force [eV/m] vs
velocity [×105 m/s]. Asymptotic expressions [9] - dot-
dash line (gray); Eq. (1) without the non-logarithmic term
- dash line (blue); Eq. (4) - solid line (green); VORPAL
results - dots with error bars.

The fact that the asymptotic expressions may signifi-
cantly overestimate the friction force in the vicinity of the
force maximum, as shown in Fig. 1, is not surprising since
the validity condition for the asymptotic expressions is not
satisfied there. The use of Eq. (1) instead of the asymp-
totic expression helps to avoid strong overestimate of the
friction force in the vicinity of the longitudinal spread of
the electrons. However, the accuracy of the expression in
Eq. (1) is itself of a concern since it was obtained with sev-
eral approximations, including an approximation of a very
strong magnetic field.

One of the features of the integral in Eq. (1) which
comes as a result of an assumption of strong magnetic field
is that at zero transverse ion velocities, the friction force
for Vion � Δe,‖ goes to zero in the absence of the non-
logarithmic term. Such behavior is, in fact, expected for
the asymptotic case of the infinite magnetic field, assuming
symmetric and complete collisions.

However, for ion velocities smaller or comparable to the
longitudinal velocity spread of the electrons, the integral
in Eq. (1) does not go to zero when the transverse veloc-
ity of an ion is zero and results in the finite value for the
longitudinal component of the force, as was pointed out by
Pestrikov [15]. This fact is typically overlooked in most
of the literature on electron cooling. In fact, the integral
in Eq. (1) and its asymptotic expressions obtained by Der-
benev and Skrinsky [7] is typically referred to as the results
obtained using the binary-collision approach. This appears
to be not accurate, as it was pointed out in Ref. [16]. The
expression in Eq. (1) was actually obtained using the di-
electric linear plasma response technique [5].

Such a behavior for the zero transverse ion velocity
(transverse angle with respect to the magnetic field lines
θ = 0) is of special interest. For Gaussian distribution of
the electrons
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)
, (2)

the integral in Eq. (1) can be evaluated analytically, and,
without the non-logarithmic term, gives the following func-
tional dependence [15]:
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which is a standard result that can be found in plasma liter-
ature, and which appears as a result of the linearized treat-
ment. A functional form of the force in Eq. (3) is very
different from a typical functional behavior of the friction
force as well as behavior for the non-zero transverse ion
velocities. In fact, in some of the literature, it is argued
that such a behavior at zero transverse angle with the “en-
hanced” force values is an artifact due to a failure of the lin-
earized plasma approach to treat hard collisions correctly,
and has nothing to do with the collective plasma response
[4]. Such arguments are based on numerical simulation of
the non-linear plasma response which does not produce the
“ehancement” observed in Fig. 1, when Eq. (1) or Eq. (3)
is used.

Besides the doubts whether the limiting case for the zero
transverse ion velocity in Eq. (3) can be used at all, the
force value in Eq. (3) vanishes for the ion velocity equal to
4Δe,‖ or higher. The presence of the non-logarithmic term
in Eq. (1) helps to get finite force values for zero transverse
ion velocities even at relative velocities much higher than
the longitudinal velocity spread of the electrons. However,
as we reported before [11], it does not provide correct scal-
ing with the magnetized logarithm at zero angle. Also, the
use of such a non-logarithmic term may be not even justi-
fied in many cases.

The origin of this non-logarithmic term in Eq. (1) is due
to collective plasma waves [5], [15], [17]. In a typical low-
energy cooler, plasma effects may become important (de-
pending on the parameters) so that inclusion of a term re-
sulting from the collective plasma oscillations may be jus-
tified. But for the high-energy coolers, the time of flight
of an ion through the cooler in the beam frame becomes
extremely short due to the large relativistic factor, so that
the maximum impact parameter is determined by the finite
interaction time rather than by a dynamic Debye screening.

Our numerical studies, presented in this paper, were
done for the parameters of the proposed RHIC cooler (γ =
107) with the time of flight through the interaction region
(in the beam frame) smaller than the plasma period, so that
in our case such a non-logarithmic term should be omitted
from Eq. (1).

To avoid limitations of the models described above an
empirical model for the force was introduced by Parkhom-
chuk [10]:

�F = −�V
4Z2e4neLp

m

1
(V 2 + Δ2

e,eff )3/2
, (4)

where Δe,eff is the effective velocity spread of the elec-
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trons. The Coulomb logarithm in Eq. (4) is given by

Lp = ln
(

ρmax + ρmin + ρL

ρmin + ρL

)
. (5)

For the special case of zero transverse ion velocity, as
in Fig. 1, we find that Eq. (4) is in remarkable agreement
with our simulation results using the VORPAL code. This
is shown in Fig. 2, where the solid curve corresponds to
Eq. (4) with Δe,eff = Δe,‖, and the points with error
bars are the VORPAL results. An agreement observed is
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Figure 2: Longitudinal component of the force [eV/m] vs
velocity [×105 m/s] for zero transverse angle θ = 0 with
respect to the magnetic field lines. VORPAL results: dots
with error bars; Eq. (4) - solid line.

not unreasonable, because Eq. (4) was obtained through
a systematic parametric fitting of the longitudinal friction
force measurements from experiments with ion beams that
were already cooled and so had small transverse velocity
spread.

However, for the design of future high-energy electron
coolers, it is extremely important to have an accurate de-
scription of the friction force for the initial state of the ion
beam, when the transverse velocities are still large. Thus,
it is important to have an accurate description of the longi-
tudinal friction force as a function of the angle between the
ion velocity vector and the magnetic field lines.

For the ion motion along the magnetic field lines (θ =
0) Eq. (1) clearly overestimated the force values obtained
with the VORPAL simulations, as well as the one predicted
by the empirical formula in Eq. (4). For all other angles
(θ �= 0), the functional dependence in Eq. (1) is closer to
the expected one and is in reasonable agreement with the
dependence in Eq. (4), which is shown in Figs. 3 and 4 for
the θ = 45 and θ = 60 degrees angles with respect to the
direction of the magnetic field, respectively.

Unfortunately, Eq. (4) does not provide anisotropic be-
havior of the friction force expected in the presence of the
strong magnetic field. For relative velocities larger than
the longitudinal spread of the electrons, this model over-
estimates the friction force for some angles, while under-
estimating it for others, compared to the VORPAL results
[18].
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Figure 3: Longitudinal component of the force [eV/m] vs
velocity [×105 m/s] for θ = 45 degrees. Eq. (1) without
the non-logarithmic term - dash line (blue); Eq. (4) - solid
line (green).
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Figure 4: Longitudinal component of the force [eV/m] vs
velocity [×105 m/s] for θ = 60 degrees. Eq. (1) without
the non-logarithmic term - dash line (blue); Eq. (4) - solid
line (green).

However, direct numerical computation of the friction
force show weak dependence on angle. This was demon-
strated by Parkhomchuk using simulations with the zero-
temperature electrons [10]. For finite temperature of the
electrons our simulations show even weaker dependence
on angle than for the case of the zero-temperature electrons
[18]. Such a limitation of Eq. (4) is expected to average out
since for the net cooling power one needs to average over
all particle amplitudes and phases.

DEPENDENCE ON THE MAGNETIC
FIELD VALUES

An important property of the magnetized friction force
is its dependence on the strength of the magnetic field in
the cooling section. In many experimental measurements,
it was reported that no increase of the friction force with
the magnetic field increase is actually observed. However,
with an accurate set-up of the measurements and with well-
aligned ion and electron beams the logarithmic increase
with the magnetic field strength is recovered [16], [19],

WEAY04 Proceedings of HB2006, Tsukuba, Japan

212 D. Beam cooling and intra-beam scattering



[20].
Similar ambiguous dependence on the strength of the

magnetic field is also reported in cooling simulation [2],
[10]. Note, that even in the report where empirical expres-
sion in Eq. (4) is advocated, which should provide loga-
rithmic increase in the force values with the magnetic field,
the numeric results reported show a reduction in the fric-
tion force as the strength of the magnetic field is increased,
which is due to the assumption of the zero-temperature
electrons. Such a disagreement between Eq. (4) and nu-
merical simulations is confusing unless an explanation of a
behavior observed is provided.

In our simulations with the zero-temperature electrons
we confirmed such a dependence on the magnetic field,
which is shown in Fig. 5. We also find that the reason for
such “abnormal” behavior are the fast collisions. The max-
imum impact parameters in such collisions is limited not by
the Larmor radius but by the time of the collision. An in-
teraction time in such a collision increases linearly with the
decrease of the magnetic field, which results in such a de-
pendence of the friction force on the magnetic field strength
at small transverse angles with respect to the magnetic field
lines. To confirm this we plot analytic expression for the
force keeping asymptotics for both the magnetized and fast
collisions [7, 9] and setting the transverse velocity spread
of the electrons to zero. Resulting curves in Fig. 6 clearly
show the behavior observed in direct numerical simulations
using VORPAL (Fig. 5).

Similar dependence occurs even for the finite tempera-
ture electrons when one considers relative velocity much
higher than the thermal velocity of the electrons.
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Figure 5: Longitudinal force [eV/m] vs angle [rad] for ion
velocity of V = 3·105 m/s, and zero-temperature electrons.
VORPAL results: dots with error bars - B=5T, dots without
error bars - B=1T, open circles - B=0.1T.

However, for the ion velocities smaller than the trans-
verse velocity spread of the electrons (V � Δe,⊥) the
contribution from the fast collisions is strongly reduced as
F ∼ 1/(Δ2

e,⊥). Such condition occurs very quickly in a
typical low-energy cooler and is, in fact, a typical starting
condition for the high-energy cooler, for example RHIC-II
[21], where initial rms velocity of ions before cooling is
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Figure 6: Longitudinal force [eV/m] vs angle [rad] for ion
velocity of V = 3·105 m/s, and zero-temperature electrons.
Derbenev-Skrinsky-Meshkov asymptotics [9] results: blue
(solid) line - B=5T, pink (dash) curve - B=1T, red (dash
dot) curve - B=0.1T.

significantly smaller than the transverse velocity spread of
the magnetized electron beam.

As a result, for such a condition in the cooler, for the
transverse velocity spread of the electrons higher than the
ion velocity, our simulations confirm that the friction force
increases logarithmically with the increase of the magnetic
field strength. Such dependence is expected for the mag-
netized cooling, and is confirmed by the measurements
[19, 16, 20]. This dependence is shown in Fig. 7, where
we plot Eq. (4) and results of VORPAL simulations.
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Figure 7: Longitudinal friction force [eV/m] for
(Vion,‖, Vion,⊥) = (3 · 105, 0) m/s vs magnetic field
B [T], for the finite temperature electron beam with
(Δe,‖, Δe,⊥)=(1 · 105, 1 · 107) m/s. Solid curve - Eq. (4);
dots with error bars - VORPAL results.

The finite values of the longitudinal friction force at zero
transverse angles with respect to the magnetic field lines
observed in our simulations (Figs. 1, 2, 7), in the absence
of collective plasma effects, are attributed to incomplete
electron-ion collisions. We also find that this simulated
finite longitudinal force scales with the magnetized loga-
rithm, with maximum impact parameter ρmax determined
by the finite interaction time [11, 18].
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SUMMARY

The asymptotic limits [7, 9] of Eq. (1) are useful qualita-
tive guides and provide several features typical for the mag-
netized collisions. However, they are not recommended for
the design of the electron cooling system since they can
overestimate the cooling power significantly.

The use of Eq. (1) directly by means of a numerical
evaluation of the integral avoids significant overestimate of
the friction force compared to the asymptotic expressions.
However, it requires the use of the non-logarithmic term
(not necessarily justified in some case) to prevent unphysi-
cal behavior at high relative velocities. Also, its functional
behavior at zero transverse ion velocity with the enhanced
values for the force may be attributed to the limitation of
the linearized dielectric approach to treat accurately close
collisions. Thus, this expression should be used with cau-
tion.

For a simple estimate of the net cooling power and for
finding basic parameters needed for the cooler, the use of
empirical expression in Eq. (4) seems sufficient.

For an accurate description of the friction force in a mag-
netic field of arbitrary strength, with accuracy better than
factor of two, direct numerical simulations with a code like
VORPAL are required. Numerically generated table for the
force values can be used within the BETACOOL code for
an accurate prediction of the cooling power.
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