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Abstract

A formula is presented for the coherent tune shift experi-
enced by a single bunch traveling between two parallel re-
sistive plates. It is shown that for the parameters of an LHC
prototype collimator in the SPS, both the nonlinear wake-
field components, calculated by Piwinski, and the correct
time dependence, as derived, e.g., by Burov and Lebedev,
must be taken into account. Similar considerations apply
to the incoherent tune shift and to the stability diagram.

MOTIVATION
About 45 collimators represent the by far largest source

of impedance in the LHC [1]. The LHC collimators con-
sist of 1-m long thick graphite blocks, needed for survival
in case of beam impact, and they are operated with half
gaps as small as 1.5 mm. The collimator jaws are tapered
over an additional 10 cm on either end, and they carry
copper cooling tubes on their back. During the 2004 SPS
run, beam measurements on a single collimator prototype
were aimed at validating the impedance model [2]. The
only impedance-related quantity which could clearly be re-
solved experimentally, by repetitive opening and closing of
the graphite jaws, was the coherent tune shift.

THEORY VS. EXPERIMENT
Table 1 list parameters approximating the conditions of

the SPS experiment (except that vertical and horizontal
planes are exchanged) [3]. A vertical full gap of 2 mm
corresponds to about 3 times the rms beam size ��, and to
only 1.5 rms beam sizes in the orthogonal plane.

Table 1: Parameters.

bunch population �� ����

hor., vert. beta function ���� 93, 25 m
dispersion function �� 0 cm
norm. transv. emittance ����� 1.5 �m
rms hor., vert. beam size ���� 0.72, 0.37 mm
rms bunch length �� 0.21 m
circumference � 6912 m
vertical tune 	� 26.135
beam momentum 
 270 GeV/c
collimator half gap � 1.5 mm
collimator thickness � 30 mm
collimator resistivity  10 ��m
collimator length � 1 m

Comparing the experimental data with predictions from
the classical resistive-wall (r.-w.) theory as described, e.g.,
by Chao [4], the measured tune shift is 2.5 times smaller
than the expected one [3, 5] (see Fig. 3). Refined tune

shift predictions are obtained from the Burov-Lebedev the-
ory for flat chambers [6], which includes the effect of the
finite chamber thickness and the so-called “inductive by-
pass,” i.e., the correct limiting behavior at low frequency.
However, a comparison of this theory with the measure-
ment still reveals a factor of 2 discrepancy at small gaps.
By contrast, at large openings, e.g., for full gaps of about
5 mm, the theory seems to match the experimental results
(Fig. 3). This gives rise to the idea that for the smallest half
gaps, which correspond to only 3 or 4 rms beam sizes, the
nonlinear components of the wake field could be important.

The nonlinear wake potential, up to infinite order in the
transverse positions of both drive (��� ��) and probe parti-
cles (�� �), for the resistive-wall wake of a longitudinally
Gaussian bunch passing between two parallel plates was
derived by Piwinski [7] and re-written by Bane, Irwin and
Raubenheimer [8]. At location � � ���� along the bunch
(with � � � denoting positions in front of the bunch cen-
ter), it is given by
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where � is the length of the collimator, �� the classi-
cal particle radius, �� the bunch population, � the rel-
ativistic Lorentz factor, � � �������, and  the re-
sistivity in ��m. The average of �� over a Gaus-
sian bunch is � �� ��� �����. The Piwinski
formula (1) applies, if the skin depth Æ	 fulfills [7]
Æ	 � �	


�
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�
, with ����� the wall

thickness, ���������� the distance between the beam cen-
ter and the wall, and � �  �!.

In (1), the time dependence and the dependence on the
transverse coordinates factorize. We can therefore replace
the time- (or frequency-) dependent part with the more pre-
cise expression of Burov-Lebedev, while keeping Piwin-
ski’s nonlinear transverse dependence, which represents a
purely geometric effect.

In the Piwinski formalism, the vertical deflection �� � of
a single particle is obtained as the negative derivative of
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the potential with respect to the � coordinate of the probe
particle, ��� � �"��"�.

We now assume that the effect of the collimator on a
coherent oscillation is described by the centroid deflection
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 � � (4)

where �
 �� � � denotes the average vertical position of
all particles, and ��
 �� �� � their average slope. We drop
terms of higher order in the centroid position, and invert
the above relation so as to obtain the coherent tune shift
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The expression in parenthesis is easily computed from the
Piwinski theory, via
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assuming that the 4 transverse distributions in �� �� �� and
�� are Gaussian, and that the two vertical ones are off-set
from zero by a small coherent amplitude �
. Two of the
four integrations, over the horizontal and vertical distribu-
tions of probe and drive particles, respectively, can be per-
formed analytically after a change of variables; a double
integral is left for numerical evaluation. We obtain [3]
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where #���

���� refers to the Burov-Lebedev impedance [6]
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with � � �� ��
�����, � � ����$�� �!	, and ���� �
� is assumed. The complexity is hidden in the factor
����� ��� ���, which is defined as
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where the error functions arise due to the distribution cut
off at an amplitude equal to the half gap, and %�&�' � is
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Figure 1 displays the function%�&�' � as a function of &
for various fixed values of ' . The sign changes for large
values of & . Also, % diverges for ' � �� (not shown).
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Figure 1: %�&�' � vs. & for various values of ' .
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Figure 2: Coherent vertical tune shift computed from the
general nonlinear formula (7) as a function of the two trans-
verse normalized emittances, for �� � �� m, �� � �� m,
� � ���, and a vertical half gap � � ��� mm. The linear
estimate based on the flat-chamber Burov-Lebedev formula
[6] and the one from the classical theory [4] are also indi-
cated. As can be seen, the latter two theories are strictly
applicable only in the limit of vanishing emittance, where
the nonlinear contributions disappear.

The dependence of the coherent tune shift on the trans-
verse emittance is illustrated in Fig. 2 for the parameters
of Table 1. Figure 3 compares the coherent tune shift ob-
served in the SPS experiment with the predictions from
Chao’s theory, Burov and Lebedev’s theory, and the non-
linear wake-field formula (7). The latter three were cal-
culated using the actual optical functions at the collima-
tor, and, for each data point, the measured bunch intensity,
bunch length, and, in the nonlinear case, also the transverse
emittances, including error propagation [3]. Only the non-
linear formula (7) agrees well with the experimental data,
while the other two theories deviate considerably.

Since a particle’s deflection depends nonlinearly on its
transverse and longitudinal coordinates, the collimator also
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Figure 3: Measured data points from the SPS experiment
[red rhombi] compared with predictions from classical the-
ory [4] [light green upward triangles], Burov-Lebedev the-
ory [6] [purple downward triangles] and general nonlinear
theory (7) [blue sideward triangles]. The error bars on the
predicted values represent both the statistical and the sys-
tematic errors.

induces an incoherent tune shift, the complete expression
for which can be found in [3, 5]. Indeed, the actual ex-
periment in the SPS exhibited some indirect evidence for
a change in the tune spread: The natural oscillation ampli-
tude was reduced when the collimator was closed [2, 9, 10],
which could be explained by enhanced Landau damping.

OUTLOOK
The effects of nonlinear wake fields described here could

prove important at other future accelerators. For example,
the GSI FAIR project foresees the use of nuclotron-type
pulsed s.c. dipoles, where the ����-beam envelope fills the
entire beam-pipe aperture with an elliptical chamber of as-
pect ratio of 2:1 [11]. The nonlinear components of the
resistive-wall wake field are likely to represent a significant
effect.

An exact computation of the stability limit due to loss
of Landau damping should include not only the coherent
dipole wake, but also the incoherent and nonlinear wake
components. As a first extension in this direction, we con-
sider the effect of the incoherent “quadrupole” wake field.
To this end, we write the equation of motion for a single
particle as
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where the first term on the right-hand side represents the
conventional linear wake, and the second term the linear
part of the incoherent wake; ) is a parameter character-
izing the frequency spread, � the line density, and ( the
time; '� � �	��� and '	 � �	��� are Yokoya factors [12]
describing the relative differences with respect to a round-
chamber wake field. Applying a Fourier-Laplace transform

to the above equation we obtain the dispersion relation in-
cluding the incoherent wake field,
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with ,� the revolution period,  � � ���,�, and  � the
angular betatron frequency. According to (12), the inco-
herent linear part of the wake field only shifts the value of
the coherent frequency, but it does not change the stability
limit. However, a stabilizing effect of the collimator wake
is likely to arise from the nonlinear wake-field components,
not yet included in the dispersion relation.

SUMMARY
The nonlinear terms of the resistive-wall wake field be-

come important if the aperture is comparable to the rms
beam size. A generalized formula combining the Burov-
Lebedev theory (dependence on  ) and the Piwinski theory
(dependence on �, �, �� and ��) is in nearly perfect agree-
ment with the SPS measurement of coherent tune shifts.
For small gaps, the incoherent tune spread from the nonlin-
ear wake field may increase the beam stability via enhanced
Landau damping.

Details on the various theories and a comparison with
the measured data can be found in [3], and a description of
the experiment itself in [2].
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