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Abstract 

The drift motion of cooling electrons makes them able 
to respond to transverse perturbations of a cooled ion 
beam. This response may lead to transverse instabilities at 
specific longitudinal wave numbers. While the dipole 
instabilities can be suppressed by a combination of the 
Landau damping, machine impedance, and the active 
damper, the quadrupole and higher order modes can lead 
to either emittance growth, or lifetime degradation, or 
both. The growth rates of these instabilities are strongly 
determined by the machine coupling. Thus, tuning out of 
the coupling resonance and / or reduction of the machine 
coupling can be an efficient remedy. 

INTRODUCTION 
Being able to make beams brighter, electron cooling 

brings specific problems for the cooled beams as well.  
First, electron cooling, as any cooling, makes the 

cooled beam less stable against any kind of coherent 
motion, would it be driven by an impedance of the 
chamber, or by a stochastic cooling system, or by a 
structure resonance of space-charge shifted envelope 
modes [1].  

Second, interaction of the individual ions with the 
macroscopic field of the electron beam can lead to 
lifetime degradation and emittance growth of the cooled 
particles. A weak-strong beam-beam effect [2] and an 
excitation by the noise of the electron beam at betatron 
harmonics are phenomena of that sort.   

Third, coherent beam-beam interaction could be a 
deteriorating factor as well [3].  

Coherent ion-electron interaction was theoretically 
considered in a model of transversely immobile, totally 
magnetized electrons [4]. This interaction appeared to be 
too weak for realistic parameters of electron coolers, 
indicating that the electron drift mobility should be taken 
into account. That approach was first attempted in two 
simultaneous papers, [5] and [6]. Being linear and local, 
the electron response can be described as a perturbation of 
the ion's revolution matrix. At first order, this non-
symplectic perturbation matrix is proportional to a 
product of the electron and ion currents. The perturbation 
of the cooler matrix was calculated in Ref. [5] for 
arbitrary ion-electron and electron-ion phase advances, 
and neglecting the Larmor phase advance of ions. The 
analysis was limited there by the determinant calculation. 
In Ref. [6], the perturbed cooler matrix was calculated 
assuming the electron-ion, ion-electron and ion Larmor 
phase advances being small. Based on analysis of the 
perturbed revolution matrix, it was shown that horizontal-
vertical coupling of the unperturbed ion motion is 
essential for the ion-electron instability. Slightly later, in 
Ref. [7], the eigenvalue analysis for the perturbed 

revolution matrix was performed in a case when the zero-
current revolution matrix is block-diagonal, with identical 
blocks, and a beam waist in a middle of the cooler. The 
instability growth rate was found analytically for these 
conditions in the same order as in Ref. [6]. This result, 
obtained without any coupling assumption, seemed to 
contradict to Ref. [6]. It is shown below how this 
contradiction is untangled. 

BEAM-BEAM INTERACTION 
Electron motion is predominantly a drift in a crossing 

electric field of the ions and the homogeneous magnetic 
field of the cooler. It can be shown that for any 
electrostatic field, the electron beam drifts as an 
incompressible liquid, 0/ =dtdne . Thus, for a 
rectangular profile of the electron beam, all the density 
perturbations are on its border: )(/ ee artn −∝∂∂ δ .  

From here, two consequences follow. First, dipole ion-
electron motion does not depend on the ion emittance as 
soon as the ions are mainly inside the e-beam. The 
effective ion density in  is determined by its linear density 

iλ  and the electron beam radius, )/( 2
eii an πλ≡ . 

Second, a quadrupole ion-electron growth rate )2(Λ  
relates to the dipole rate )1(Λ  in the same way as for the 
conventional impedance [8]: ( ) )1(2)2( /2 Λ=Λ ei aa , 

where 2
ia  is the rms ion beam radius.  

Linearity and axial symmetry allow expression of ion-
electron equations of motion in terms of circular variables 

iyx +=ξ : 
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Here the coefficients k describe mutual influence of the 
beams and a perturbation of the ion motion by the 
magnetic field. In practice, all the phase advances over the 
cooler length kl=ψ  are small, and Eqs. (1) can be 
solved by a perturbation method, assuming zero initial 
condition for the electron offset. The resulting 4D cooler 
matrix can be presented as follows:       

ffα SMSCC ⋅⋅+= −1
0 .                   (2) 

Here 0C is a matrix of the pure solenoid, fS  is the fringe 

field matrix, edieψψα 2= is the beam-beam interaction 
parameter, and M describes the matrix structure of the 
beam-beam perturbation: 
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The block structure of the perturbation matrix M is 
common for all rotation-invariant matrices. Note that the 
diagonal block of M contains additional small phase 
factors. The coupling block and the Larmor part of the 
diagonal block have been found in Ref. [6]; the coupling 
block and the electron-drift part of the diagonal block 
have been obtained in Ref. [5].  

Taking a reference point in a middle of the cooler, an 
entire 4×4 revolution matrix can be expressed as  

( )
21

0
121

0

)0( ;
/

ff
/α −−− ⋅⋅⋅⋅=

⋅+=
CSMSCP

RPIR
  ,           (4) 

where I is the identity matrix, and P will be referred as a 
normalized perturbation matrix. The normalized 
perturbation is dominated by its coupling part: 

ediL,cd 1.0/ ψ≅PP . Typically, this ratio is ~ 32 1010 −− − .  

PERTURBATION THEORY 
To find out how the perturbation P shifts eigenvalues of 
the revolution matrix, a perturbation approach can be 
developed. For the unperturbed eigenvectors, the 
Lebedev-Bogacz form can be used [9]:    
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These 4 eigenvectors are symplectic-orthogonal:  
)sgn(2)0()0( mi mnnm δ−=⋅⋅+ VUV  ,           (5) 

where U is the symplectic unit matrix. The superscripts 
T* , and + stand for the complex conjugation, 

transposition and Hermit conjugation.  
The perturbation formalism is developed here similar to 

the same problem in Quantum Mechanics [10], leading to 
the following result for the growth rates: 
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with 0T as the revolution time. 

In case of degeneration, ]2[mod21 πμμ = , a choice 
for the unperturbed eigenvectors is not unique. Again, as 
for the similar Quantum Mechanical problem, the correct 
linear combinations are those, making the perturbation 
diagonal within the sub-space of degeneration.  

GROWTH RATES 
Neglecting the small diagonal part, the growth rate is 

calculated as 
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Without coupling, only the small diagonal part works, 
yielding the following growth rate:  

( ) )2/(12/24/ 0
d TediL ψψα −=Λ  .            (8)  

The coupling is so important because the electron drift is 
orthogonal to the ion offset. Thus, for planar (uncoupled) 
modes, the force, acting back on the ions, is orthogonal to 
the ion velocity. The resulted work is zero, and thus the 
rate is zero too (at the lowest order over the small phases). 

A specific case of a block-diagonal revolution matrix 
with identical x and y blocks, and with the envelope waist 
in the cooler center was treated in Ref. [7]. For that case, 
the growth rate was calculated:  

)4/( 00 lTαβ±=Λ                            (9) 

with 0β as 2D beta-function in the cooler’s center. This 
result follows also from the perturbation formula (6), 
applied to this degenerate case. Indeed, due to the rotation 
invariance, the correct eigenvectors are the circular 
modes:  

2/)(;2/)( 21 yxyx ii VVVVVV +=+= , 

where yx,V are uncoupled (planar) eigenvectors. So, even 
without the machine coupling, there is an area around the 
coupling resonance, where even a small ion-electron 
interaction makes the optics 100% coupled. The width of 
this degenerate area is here 0Tyx Λ≅− μμ . For practical 

cases, this width is as small as 54 1010~ −− − . Thus, 
without machine coupling, the growth rate is zero 
everywhere, apart of the separate punctured point of the 
coupling resonance. It was not realized in Ref. [7], that 
even a tiny step out of that special point makes the rate 
strongly suppressed. 

More specific result can be obtained for a following 
form of the revolution matrix: 
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where 21/−D is an inverse drift matrix for a half of the 
cooler, DR is the revolution matrix for no-field and no-
current solenoid, and C is the on-field and on-current 
solenoid matrix. For specific parameters of ACR 
(RIKEN) ion ring, the eigenvalues of that sort of matrix 
were numerically calculated in Ref. [11]. Growth rate as a 
function of the tune separation is presented for this case in 
Fig. 1.      
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Fig. 1: Ion-electron growth rate, in inverse Kturns 
( 0

3 /10 T− ) as a function of the tune separation yx μμ − , 
reproducing Fig. 1 of Ref. [11]. 

It can be shown that this growth rate is described by the 
following formula: 
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Note that the width of the coupling resonance is 
determined by the (uncompensated) ion Larmor phase 
advance iLψ .  

If the solenoid is compensated, the revolution matrix is 
written as CCRCR ⋅⋅⋅= −− 2/1

0
2/1

0 D . Numerical eigen-
value calculation for the same parameters as Fig. 1, but 
with this compensated coupling, reduces the width of the 
growth rate resonance ~ 300 times, see Fig. 2. 

 
Fig. 2: Growth rate plot similar to Fig. 1, except the 
solenoid coupling is compensated. The peak maximum is 
the same, but the width is reduced ~300 times. 

FAST HIGH ORDER MODES 
The two-beam interaction is local. That is why the 

growth rates do not depend on the longitudinal wave 
number n. This makes a difference between the two-beam 
instability and instabilities driven by the chamber 
impedance. The chamber impedance destabilizes slow 
modes (n<0), and stabilizes fast modes (n>0). From other 
side, the Landau damping is not effective at 

ηξ /* ≡≅ nn . To be stabilized by the chamber 
impedance, these modes have to be fast. That is why, 

conventionally, the sign of the chromaticity ξ is set 
identical to the sign of the slippage factorη . The dipole 
ion-electron instability would be most likely suppressed 
either by Landau damping or by the chamber impedance.  

The situation is different for the quadrupole and higher 
order modes though. The rate of the mode m scales with 
the aperture b as )1(2 −−∝ mmb  in the units of the dipole 
rate [8]. The same is true for the ion-electron rate, with 
the electron beam radius ea as the aperture. 

Usually bae << , so the quadrupole or higher order 
modes, most likely, are insufficiently suppressed by the 
chamber impedance. Since there is no Landau damping at 

ηξ /* ≡≅ nn , these fast quadrupole or higher order 
modes are, most likely, linearly unstable. 

At some level, these oscillations would be stopped by 
their own non-linearity and then stay forever. Due to 
vanished Landau-damping, transfer of this coherent 
motion into incoherent one is strongly suppressed. This 
suppressed energy transfer still has a place, and results in 
slow emittance growth and lifetime degradation. This 
problem can be fixed by stepping away from the coupling 
resonance, or / and reduction of the coupling area.  

Recycler Ring used to stay at the coupling resonance, 
having ~100% coupling. There was emittance growth, 
strongly correlated with the electron current and the pbar 
linear density. At “mining” state (max bunching), and 
100mA of e-beam, the typical rate was ~ 30 pi mm 
mrad/hr, or ~0.001 of the calculated quadrupole rate for 
these parameters. The described theory pushed the author 
to request more tune separation. For the new working 
point, the coupling parameter reduced ~10 times, and the 
emittance growth reduced by about the same factor [12].    

I am thankful to Martin Hu, Sergei Nagaitsev, Lionel 
Prost, and Alexander Shemyakin for numerous details of 
the observations in the Recycler, and to Alexander 
Valishev for the Recycler optical file. My special thanks 
are to Valeri Lebedev for his multiple remarks related to 
various aspects of this paper. 
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