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Abstract

In this paper, we study the behavior of high intense beams
in the periodic field by using thin lens approximation for
the space-charge forces. The main chaotic behavior and
halo formation can be shown through simple calculations.
Meanwhile, It is very easy for us to study the behavior of
high intense beams with more complicated realistic
distributions than K-V distribution by this approximation,
which is rather difficult by other ways.

1  INTRODUCTION

High-intensity, high-energy proton linear accelerators are
being designed for new projects around the world[1].
These projects include the accelerator transmutation of
waste (ATW), accelerator-based conversion of plutonium
(ABC), accelerator production of tritium (APT), and the
next generation accelerator-driven spallation neutron
sources. One of the important problems faced in the
design of this kind of accelerators is the beam loss. Small
beam loss in high energy section of the linacs can lead to
radioactivation of accelerators, which can degrade
accelerator components and prevent hands-on
maintenance. The threat of beam loss is increased
significantly by the formation of beam halo. The
experiments and the numerical simulations have show
that the rms mismatch of the beams is the major source of
halo formation[2,3,4].
  A popular model used to study the dynamics of halo
formation is the particle-core model[5-9]. In this model,
halo particles interacted with a beam core that is assumed
to oscillate according to the rms envelope equation. The
reasons of oscillation of the beam core may be an initial
radial mismatch in a constant focusing channel or an
initial radical matched beam in a periodical field of
FODO structure. The dynamics of halo formation can be
showed by this model. Moreover, the maximum
amplitudes of the halo particles can be predicted
quantitatively, which are basically in accord with the
results drawn from PARMILA simulations[10]. Almost
all the studies on this model are to write out the envelope
evolution equation of beam core and the dynamic
equation of the halo particles, then resolve the equation of
halo particles numerically or analytically. The problem is
that the dynamical equation of halo particle is very hard to
get for the more complicated realistic beam distributions
than K-V distribution or Gaussian distribution. In this

paper we use thin lens approximation for the space-charge
forces and the transfer matrix instead of dynamic
equations of beam core and halo particles. The great
advantage is that we can study the behavior of high
intense beams with the more complicated realistic
distributions. Meanwhile, It provides another way of
studying the halo particles.

2  THE ALGORITHM

For simplicity, we assume that the external field and the
beam are rotationally symmetrical and periodic. Take the
beam line between two neighboring sites with maximum
beam sizes as a period L . That is to say, if we assume
that the beam radius is R then at z = 0  or
z L= R Rmax at z L= / 2 R R= min . Here Rmax  and Rmin

are the maximum, minimum radius of the beam,
respectively. Defining

ρ β ε= = =R R R R R Ra amax min max min/ , , / .    (1)

Here ε  is the beam emittance, ρ  and β  are the function

of beam current I . Denote the values of ρ , β  as ρ0 , β0
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Here r  stands for transverse displacement ( x  or y ),
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here µ 0  is the phase advance per period in the case of

I = 0 .
 We use thin lens approximation for the nonlinear space-
charge forces and arrange these thin lenses at the sites
where the beam radius is maximum or minimum. When
the particle goes through any one of these lenses, r’ will
increase ∆r’i.e., r r r’ ’ ’→ +∆ . When the beam core is of



the form of K-V distribution, at the location z = 0  or
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where g  is a constant related to the generalized

perveance. On the other hand, when we take the space-
charge forces into account, the transfer matrix of the first
half period may be written as

    MF =
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where µ  is the phase advance per period of the particles

in the beam core. MF  should satisfy the following

equation
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From equations (4) and (5) we have
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In a similar way, we may also get the transfer matrix of
the last half period ML .

  In order to change r  and r’ into dimensionless
parameters, we make the following transformations
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Meanwhile, at z = 0  or z L=
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In order to introduce a more complex realistic
distribution for the beam, we let
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In a similar way we may get
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at z L= / 2 .

3  THE RESULTS OF CALCULATION

Before calculation, let us first analyze the motion of the
beam particles qualitatively. When the beam core is K-V
distribution, for the particles with r R≤ , the motion of
the particles can be described by the transfer matrices
MF  and ML , µ  is the phase advance per period of the

particles with r R≤ For the particles with r R>> since
the phase-charge forces act on the particles can be
omitted, the motion of the particles can be described by
matrices MF 0  and ML0 , µ0  is the phase advance per

period of the particles with r R>> . The phase advance
per period increases from µ  to µ0  when r  changes from

r R≤  to r R>> . If µ0 180> o µ < 180o half-integer

resonance will occur, which must be voided in the design
of the accelerator. If µ0 90> o µ < 90o there will give rise

to the fourth order integer resonance and may lead to
other larger order integer resonance, which also make the



beam unstable as will be shown in the calculations. When
the beam core is the other kind of distribution introduced
in this paper, since the beam density decreases gradually

as r  increases and it is zero at r R= 2 , the beam is
comparatively more stable than that with K-V distribution
in the same case of µ µ0 which is in accordance with the

result that the K-V distribution beam is somewhat more
susceptible to instability than a more realistic distribution
beam[11].

  In the case of µ0 60= o  and µ = 40o the plot of the

Poincare surface of section[12] (one point is plotted in the
( , )x y  phase space at every site where the beam has the

maximum radius) for the K-V distribution shows that
islands around the resonance 1 8/ ( µ = 45o ) is very

obvious and comparatively large. Islands of other orders
resonance can also be told apart. For the other distribution
introduced here, we can just see the islands of
1 7/ ( µ = 514. o ) resonance. The islands of 1 8/

resonance should be more inside,  but they are not found,
perhaps because these islands are too small. Stochastic
trajectory is not found in both figures. But we can see that
K-V distribution is more regular. Both figures are drawn
with ρ = 144. . The figures with other values of ρ  have

the same topology as above two figures. So we keep
ρ = 144.  in all calculations afterwards.

  For µ0 100= o  and µ = 70o , according to the above

analysis, there should exist 1 4/ ( µ = 90o ) and 1 5/

( µ = 72o ) resonance. From the Poincare surface of

section for K-V distribution, islands of 1 4/  resonance
can be clearly seen, but the islands of 1 5/  resonance are
not found, which are overlapped with the islands of 1 4/
resonance. In the vicinity of the islands of 1 4/  resonance
there are a large of area of chaos, via this area the inner
particles can go out to become halo particles, vice versa,
the outside halo particles can also go through this chaotic
area to become inner beam core particles. Contrary to K-
V distribution, for the more realistic distribution
introduced here, though the islands of 1 4/  resonance also
appear, one can not find any chaotic area from the
Poincare surface of section for this distribution. So, for K-
V distribution, in order to get stable intense beams, the
phase advance µ0  per period must be less than 90o .

However, for a realistic beam distribution this limit may
not be so strict.

  For the same µ0 when µ  decreases further, the situation

is basically not changed. From the Poinare surface of
section at µ0 100= o µ = 50o  for K-V distribution, one

can see not only the islands of 1 4/  resonance but also
the islands of 1 6/  resonance. A large chaotic area still
exists between this two kinds of islands and outside the
islands of 1 4/  resonance. The beam halo can also be

formed in this case. For the other distribution introduced
in this paper, islands of 1 4/   resonance can be seen, the
chaotic area is still not seen and the beam halo can not be
formed.

4  CONCLUSION

The behavior of intense beams in the periodic field is
studied by using thin lens approximation for the space-
charge forces for two kinds of beam distribution. Through
calculation the chaotic behavior and the kinetic of beam
halo formation can be shown. Moreover, the property that
K-V distribution is more susceptible to instability is
clearly shown. Therefore, the algorithm introduced in this
paper provides another good way to study the dynamics
of beam halo formation.
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