

Experimental Verification of Halo Formation Mechanism of the SNS Front End

Dong-o Jeon

Spallation Neutron Source Oak Ridge National Laboratory

January 31, 2007

The Spallation Neutron Source

- The SNS began operation in 2006!
- At 1.4 MW it will be the world's leading pulsed spallation source
- The peak neutron flux will be ~20–100x ILL
- It will be a short drive from HFIR, a reactor source with a flux comparable to the ILL

Overview of Spallation Neutron Source

Sources of Front End halo generation

- MEBT is the largest contributor to FE halo generation
- Nonlinear space charge force stemming from a large transverse beam eccentricity generates halo in MEBT (D. Jeon *et al*, PRST-AB 5, 094201 (2002))
- As minor contributors, several FE components and physical effects may contribute to the generation of beam halo

Region with a large transverse beam eccentricity ~2:1

Fraction of core in x plane sees nonlinear space charge force, resulting in halo formation in x plane

Space charge force and real space distributions OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Optics modification improves beam quality

Nominal Optics

Round Beam Optics

Optics modification alone reduces halo significantly in simulations (Simulation)

Round Beam Optics improves X beam quality (Emittance Measurement)

Nominal Optics ϵ_{χ} = 0.349 mm-mrad (1% threshold) 0.454 mm-mrad (0% threshold) Round Beam Optics ϵ_{χ} = 0.231 mm-mrad (1% threshold) 0.289 mm-mrad (0% threshold)

Round Beam Optics reduces halo and rms emittance in X significantly

Tail is significantly reduced for Round Beam Optics

- Round Beam Optics reduces beam tail visibly
- This tail is the source of beam loss in downstream linac

Round Beam Optics improves Y beam quality (Emittance Measurement)

Nominal Optics ϵ_{γ} = 0.353 mm-mrad (1% threshold) 0.472 mm-mrad (0% threshold)

Round Beam Optics ϵ_{Y} = 0.264 mm-mrad (1% threshold) 0.306 mm-mrad (0% threshold)

Round Beam Optics reduces halo and rms emittance in Y significantly

Tail is significantly reduced for Round Beam Optics

- Round Beam Optics reduces beam tail visibly
- This tail is the source of beam loss in downstream linac

Parmila simulation

Consistent with the emittance measurement results

Round Beam Optics reduces beam loss in the downstream linac

- Loss in CCL-SCL transition reduced by factor 4
- Loss also reduced in the downstream linac
- Consistent with the simulation predictions

Conclusion

- A new halo mechanism was experimentally verified through emittance measurements!
- The proposed "round beam optics" improves beam quality, reducing rms emittance and halo.
- The first emittance data showing practically no halo!
- Beam loss reduced in the downstream linac.
- Valuable benchmarking of space charge codes with measurements.
- For mismatched beam, simulations show some limitations.

Halo formation in Front End and its Mitigation

Beam loss along the linac with Nominal Optics

