Fabrication and Test of Cavity BPM for KEK-ATF2 and PAL-XFEL

J. Y. Huang , S. H. Kim, Y. J. Park, W. H. Hwang, PAL Y.Honda, Y.Inoue , T. Tauchi, J. Urakawa, KEK M. Ross, FNAL

> Related Talks: •Y. Honda: WEZH102 •M. Ross: WEZH103

APAC2007, Indore, Jan. 31, 2007

Introduction

✓ Sub-micrometer BPM needed for KEK-ATF2 (ILC) / and PAL-XFEL

- KEK-ATF2 : under construction in KEK-ATF for study of ILC
- PAL-XFEL : planned XFEL facility in PAL

✓ Use simple microwave BPM structure : Cavity BPM

- pill-box cavity tuned at TM110 transverse dipole mode
- signal proportional to the beam displacement and bunch charge
- stronger signal than the pickup BPMs
- mechanical stability

Cavity BPM

- ✓ Basic design and tests have been done in KEK-ATF, by Y. Honda
- Further improvements in waveguide structure, tuning mechanism, brazing technology, and beam tests are performed by collaboration between KEK, SLAC, PAL

APAC2007, RRCAT-Indore, Jan 31, 2007

Requirements cavity BPM

- Precision BPM for KEK-ATF2 (ILC) / XFEL
 - Resolution : 100 nm by single shot measurement
 - Measurable range > +/-50 um (+/-250um w/1um resolution)
 - x-y isolation : > 30 dB
 - E-center offset: < 10 um
- Compact but large aperture to prevent noise from beam halo
- Rigidly attached on each Q-magnet
- To work with 357 MHz multi-bunch

Cavity Parameter

- Frequency (cavity radius)
 - Keep the basic design of KEK (Honda)
 - Pill-box cavity, TM110 mode, C-band (for ATF's bunch length)
 - Magnetic coupling by slots through the end plate
 - 4-ports to keep symmetry
 - Digital wave form recording ; SLAC-type electronics
 - *** 6.426 GHz +/- 1 MHz**
- Aperture: increase to the largest possible \rightarrow 20 mm diameter
- Cavity gap (length)
 - Energy deposit, contamination from other modes
 - ***** 12mm is optimal
- Slot size for signal coupling
 - Large size ; short decay time
 - Small size ; week signal
 - * 1.5 x 13 x 1.5 mm (width, length, depth)

Design History Y. Honda

Straight waveguide Feedthrough welded

Design Summary

Fabrication

✓ Mechanical Accuracies

- use jigs for machining accuracies (<10 um)
- diamond tool for cavity machining (Rmax <0.3)

✓ Brazing tests

- Filler metals: shape and quantity
- filler slots

Machining Accuracy

Surface Roughness (waveguide) ; ≤ Rmax 5 Surface Roughness (cavity) ; ≤ Rmax 0.3

position		Dimension	Sample 1	Sample 2	Sample 3	
	А	8.75	-3	4	12	
	В	8.75	2	-10	-10	
1	С	11.5	-10	-12	29	
	D	7.5	-1	-6	2	
	Е	28	6	-28	5	
	А	8.75	-2	5	14	
	В	8.75	1	-11	-8	
2	С	11.5	5	-5	-7	
	D	7.5	-1	-6	6	
	Е	28	8	-8	4	
	А	8.75	7	-15	12	
12	В	8.75	-8	6	-3	
3	С	11.5	2	11	-27	
44	D	7.5	4	-9	9	
	E	28	6	-15	6	
	Α	8.75	5	-11	5	
	В	8.75	8	8	-5	
4	С	11.5	9	-12	18	
	D	7.5	8	-8	0	
	E	28	7	-8	-2	

Dimension : mm Tolerance & Sample : µm

Brazing Test, "A"

✓ Sheet type filler metal ; thickness 0.2 mm, Melting temp 720 deg.C
✓ Vacuum brazing
✓ 1.5 kg weight

Result of Brazing Process "A"

✓ 0.2 mm gap between W/G and Cavity after brazing
 ✓ Thin (1mm) coupling wall between cavity and W/G → deformed

APAC2007, RRCAT-Indore, Jan 31, 2007

Brazing Test, "B"

✓ Wire type filler metal ; Dia. 1.0 x Length 10 mm, Melting temp 720 deg.C
✓ Vacuum brazing
✓ 1.5 kg weight

Result of Brazing Process "B"

✓ Zero gap between W/G and Cavity, but shortage of filler metal
 ✓ Thin coupling wall between cavity andW/G → deformed

APAC2007, RRCAT-Indore, Jan 31, 2007

Brazing Test, "C"

- ✓ Wire type filler metal ; Dia. 1.0 x <u>Length 18 mm</u>, Melting temp 720 deg.C
- ✓ coupling wall between cavity and waveguide : 1.5 mm
- ✓ Vacuum brazing
- ✓ 1.5 kg weight

Result of Brazing Process "C"

✓ Accepted !!

APAC2007, RRCAT-Indore, Jan 31, 2007

Brazing Test of Feedthrough

- ✓ Filler Metal Ag60-Cu27-In13, M.T 720 deg.C
- ✓ Sample

Type A ; 0.5 wire type alloy Type B ; 1.0 wire type alloy

✓ Vacuum Leak Rate

Type A - Not detected Type B – 2.0 E-9 Torr.l/s

✓ Type A: Adjust hold time @ melting point (5 sec → 10sec) & make groove

APAC2007, RRCAT-Indore, Jan 31, 2007

Tuning Mechanism

 ✓ Frequency: volume tuning (mechanical, thermal)
 ✓ Isolation: artificial asymmetry by making dents, or mechanical deforming for compensation of symmetry
 ✓ Invention of tuning pins with screw brazed in to cavity body cavity volume adjustable by push and pull
 ✓ Acceptable results from tests

Final Model (Prototype)

✓ uW characteristics Tuning method invented: improved tuning Tunable within requirements

✓ Beam Test at KEK-ATF

- definition -

 $\beta = (1-S_{11})/S_{11}: 1\text{-port measurement}$ $\beta = S_{21}/(1-S_{21}): 2\text{-port measurement}$ $P_{L} = f/\Delta f$ $P_{0} = (1 + \beta) Q_{L}$ $P_{ext} = Q_{0}/\beta$

APAC2007, RRCAT-Indore, Jan 31, 2007

- before and after brazing test cavity BPM -

model	dents	compre- ssion	Before brazing			After brazing			
			Q_0	f(GHz)	isolation	Q_0	f(GHz)	isolation	
#1	Yes	tight loose	8151 3775	6.41775, 6.41705 6.41843, 6.41795	-44.1 dB -19.8 dB	7229	6.42024, 6.41952	-21.7 dB	
#2	No	tight	7641	6.41709	-29.6				
#2-m	Y- DD	tight	5012	6.41725, 6.41445	-47.7 dB	6928	6.41908, 6.41629	-30.7 dB	
#3	Yes	tight		6.418, 6.417	-23 dB	7163	6.42051, 6.41979	-20.1 dB	
#4	No	tight loose	7222 5198	6.41764 6.41880	-19.4 dB -18.7 dB	7556	6.42082	-28.7 dB	

* #2-m ; deep dents on the #2 model, dent depth is 0.35 mm.

- ✓ f: 2.45 MHz increase w/ brazing.
- ✓ f: 2 MHz increase @ vacuum.

- isolation tuning and e-center measurement -

(a) Initial error

APAC2007, RRCAT-Indore, Jan 31, 2007

- x-y isolation and e-center error -

nsverse port

		A
)•	
transmission to the op	oposite port	transmission to the transve
S21(opposite)	S21(transverse)

			after brazing			
model		before brazing	before tuning	after tuning		
#1 dents	x-y isolation(dB) e-center A-C(µm) e-center B-D(µm)	-44.1	-21.7 -4.0±3.3 4.2±3.4	-50.8 -9.5±3.7 2.1±3.9		
#2 deep dent s	x-y isolation(dB) e-center A-C(µm) e-center B-D(µm)	-47.7	-30.7 6.9±2.6 4.2±3.5	-55.8 6.8±4.0 2.8±4.0		
#3 dents	x-y isolation(dB) e-center A-C(µm) e-center B-D(µm)	-23	-20.1			
#4 no dents	x-y isolation(dB) e-center A-C(µm) e-center B-D(µm)	-19.4	-28.7 6.2±4.8 1.6±3.7	-53.2 6.9±6.3 1.1±2.4		

Isolation $= 20 \log$

APAC2007, RRCAT-Indore, Jan 31, 2007

Beam Test - KEK ATF-

APAC2007, RRCAT-Indore, Jan 31, 2007

Sensitivity of BPM

✓ Calculated sensitivity for 2-port is 0.8 V/mm @ 10¹⁰ e/bunch, 8mm bunch length

✓ The experimental result seems consistent with prediction.

APAC2007, RRCAT-Indore, Jan 31, 2007

X-Y Isolation

- cross talk measurement -

 \checkmark X-y isolation < 20 log(50 um / 5 mm) = -40 dB

Prototype Summary

- Cavity-type BPM were developed in collaboration with KEK for future accelerator
- Tuning Mechanism Improved
- The resonant frequency is 6.422 GHz, 4 MHz lower than goal(6.426 GHz) → 34 um reduced for production
- Resolution is 100 nm, Measurable range is +/- 250 um
- X-Y isolation is better than -40 dB in the real beam test at KEK- ATF
- Production of 11 cavity BPMs done with a long beam tube and smaller cavity (53.788 mm: -34 um from old one)

Fabrication of 11 BPMs

- Assembly, Cold Test, Brazing -

Fabrication of 11 BPMs - Assembly Drawing-

- Cavity diameter is $53.788 \text{ mm}(\leftarrow 53.822)$
- A long beam tube for assemble on the Q-magnet

Prototype

Production BPM

Fabrication of 11 BPMs

- RF data -

	Frequency (MHz)				X-Y Isolation(dB)					
BPM No.	Before brazing	After brazing & Vacuum			Defere	After brazing & Vacuum		Beta : β	loaded Q	
		Before tuning	After tuning	Δf(by tune)	Before brazing	Before tuning	After tuning	∆isolation	@ vac	@ vac
		f		S21(13) / S21(12)				(1-S11) / S11	$_{QL=f}/\Delta_{f}$	
Tol.			6426±1				< -40		> 0.3	> 5000
1	6422.234	6424.506	6425.844	-1.338	-33.2	-18.5	-33.2	14.7	0.36	6288
2		6424.797	6425.453	-0.656		-26.0	-43.7	17.7	0.34	5745
3		6424.128	6425.297	-1.169		-17.6	-54.2	36.6	0.38	6250
4	6422.107	6424.625	6425.669	-1.044	-16.0	-12.7	-45.5	32.8	0.37	6250
5		6423.650	6425.200	-1.550		-26.9	-48.3	21.4	0.38	5943
6	6421.125	6424.200	6425.434	-1.234	-46.1	-30.7	-44.5	13.8	0.38	6327
7		6423.897	6425.606	-1.709		-35.9	-55.5	19.6	0.40	6175
8	6420.897	6423.969	6425.581	-1.612	-12.1	-21.4	-46.5	25.1	0.37	6048
9	6421.538	6423.831	6425.231	-1.400	-23.5	-30.1	-42.9	12.8	0.31	5313
10	6421.367	6423.934	6425.416	-1.482	-16.9	-27.4	-37.1	9.7	0.36	6047
11	6421.591	6424.744	6425.619	-0.875	-11.3	-18.7	-53.6	34.9	0.35	5842
12	6421.778	6424.050	6425.513	-1.463	-30.3	-36.1	-48.1	12.0	0.39	6307
13	6421.584	6424.009	6425.334	-1.325	-23.7	-22.5	-53.1	30.6	0.32	5792
Average	6421.580	6424.180	6425.476	-1.297	-23.7	-25.0	-46.6	21.7	0.36	6025
APAC2007, RRCAT-Indore, Jan 31, 2007 J. Y. Huang, PAL										