Status of the Australian Synchrotron Project

Greg LeBlanc

- acility Overview
- ccelerator Systems
- nitial Beamlines
- ccelerator Commissioning
- torage Ring Performance
- onclusions

The Australian Synchrotron is a synchrotron light facility based on a 3-Ge electron storage ring.

Located in metropolitan Melbourne.

Built by a project team from Major Projects Victoria (MPV), a part of the Victorian State Government.

The funding for the building and accelerators has been provided by the Victorian State Government.

The initial nine beamlines are being funded by a group of interested partie including universities, research organisations, other state governments, a New Zealand.

Storage ring commissioning, and beamline installation and commissioning continue through March 2007, after which the facility will become operation

- elatively small staff of 54 people.
- pecialist contractors and consultants used.
- esign and project management responsibility has been placed on suppliers it turn-key contracts.
- ontracts for the following systems included installation and commissioning:
- Injection system
- Storage ring RF system

Schedule Milestones

- sign announced
- ilding contract placed
- ilding complete
- aff move into building
- stallation begins
- ection system commissioning begins
- brage ring installation complete
- brage ring commissioning begins
- st turns in the storage ring
- amline installation begins
- amline commissioning begins ansition to operations

January 2003 July 2003 February 2005 March 2005 April 2005 October 2005 May 2006 June 2006 June 2006 September 2006 February 2007 April 2007

on Source

- /
- equency
- armonic Pre-buncher
- tion rate
- lised Emittance
- harge (short/long)

Linac

90 keV thermionic 0.1[GeV] 2997.92[MHz] 499.654[MHz] 1-5[Hz] <50π[mm·mrad] >0.31/>3.1[nC]

Booster

Function Lattice

nference

equency

nic Number

Bunch Current

unch Train

on Tune (h/v)

l Chrom. (h/v)

/ Spread (3GeV)

ntal Emittance

 $0.1 \rightarrow 3.0[GeV]$ 130.2[m] 499.654[MHz] 217 >0.5[mA] >5.0[mA] 9.2/3.25 -8.8/-11.50.094[%]

33[nm·rad]

Storage Ring 3[GeV]

Frequency rmonic Number ak RF Voltage rrent tical Photon Energy tatron Tune (h/v) mentum Compaction tural Chromaticity (h/v) diation Damping (h/v/l) ergy Spread diation Loss Per Turn

ergy

cumference

rizontal Emittance

3[GeV] 216[m] 499.654[MHz] 360 3.0[MV] 200[mA] 7.8[keV] 13.3/5.2 0.002 -28/-27 3/5/3[ms] 0.1[%] 932[keV] 7-16[nm-rad]

- bined function dipoles
- able emittance with dispersion
- ector coils on sextupoles

Controls

EPICS control system

Different control systems from contractors

All EPICS compatible

Accelerator Toolbox running in the Matlab environment is used

Matlab Channel Access makes process variables available in Matlab

Matlab scripts automate measurements

Diagnostics

- BPMs per sector
- First-turn, turn-by-turn, and slow acquisition simultaneously
- orizontal and vertical scrapers
- orizontal and vertical stripline detectors
- DCCT
- beam loss monitor system
- -ray diagnostic beamline
- Optical diagnostic beamline
- Streak camera
- ICCD camera
- Fill pattern Monitor

XDB

natic layout of the X-Ray Diagnostic Beamline

natic layout of the Optical Diagnostic Beamline

e are nine beamlines planned

R*	Infrared Spectroscopy	Bending Magnet
BM*	Protein Crystallography 1	Bending Magnet
D	Protein Crystallography 2	In-vacuum undulator
D	Imaging & Medical Therapy	Superconducting wigg
D	Microspectroscopy	In-vacuum undulator
DBM*	Powder Diffraction	Bending Magnet
2ID*	X-ray Absorption Spectroscopy	Wiggler
BID	Small & Wide Angle X-ray Scattering	In-vacuum undulator
4ID*	Soft X-ray Spectroscopy	APPLE II Undulator
4		

mlines under construction

Injection System

- nmissioning included in contract
- personnel actively involved
- c klystrons started in September 2005
- first electrons from the gun October 2005.
- first linac beam December 2005.
- t beam into the booster February 2006
- ster ramp developed during March 2006
- t 3 GeV beam April 2006.

First electrons from gun

First 100 MeV beam

First 3 GeV beam

Routine operations

- S not included in the injection system commissioning
- st beam in BTS in the storage ring tunnel June 1 2006
- st turn in the storage ring on June 8, 2006.
- st beam was stored July 14, 2006
- rrent was immediately stacked to 1 mA
- utine injections to 10 mA in first week
- gnostic equipment commissioned and storage ring characterization began
-) mA has been stored with a lifetime of 6.5 hours (after the first of the insert vice chambers has been installed)
- e first insertion device is installed and has been run with the minimum gap on more more the storage ring.
- cond insertion device chamber installed and lifetime at 200 mA unchanged

First electrons into storage ring

First turn in the storage ring

le	Edit	Vert	Horz/Acq	Trig	Display	<u>C</u> ursor	Meas	M <u>a</u> sk	<u>M</u> ath	Арр	MyScope	<u>U</u> tilities	Help	Button	
k F	Streamer was	Sam		_										Jun 06 23	3:46
	1 1						· · ·							-	:
									2. 2. J.	ê ser e					3 S.
					345 545										
								-=-		· ·					
	a d		بالعلي بادانا		er Herene			. JE			aluta Balla			en el antra a	. L
44	HANKEN	Weight		at a minute			। प	al de la				d of the other	म र । तत्वार	and the	10
	110			ALC: NO											
ha	L III I		in the second second	President	all designed	Dallabella	ni jed	THE PI	A LINE AND		and a light of the	a sealer of	Containe,	APP BURN	1
		· · · ·								- <mark>1</mark> .					
								1							
							• • • • • • •								
							- 2 - 2 - 2 -								
							• • • • • • • •								

Multiple turns

spos (m)

First light 03:00 July 14 2007

UAL

Injection

Doeo [AmpHre]

BPM Offsets

First Response Matrix

Optics Correction

Distributed Dispersion Optics

Response Matrix used to characterize wiggler

Difference between 205mm wiggler measured response matrix and 14mm wiggler measured response matrix

Emittance

$$σ_x = 108.32 \text{ um}$$

 $σ_y = 84.28 \text{ um}$
 $ε_x = 17.52 \text{ nm}$
 $ε_y = 0.22 \text{ nm}$

- he Australian Synchrotron Project has been very successful.
- here is still work to be done before becoming an operational facility
- small team of dedicated staff have done an excellent job
- writing the specifications for the contracts
- working with the contractors
- integrating all of the systems

has led to a smooth commissioning according to the project schedule.