Bunch Compression using the Transport Line and Short Bunch Revolving in NewSUBARU

S. Suzuki T. Asaka SPring-8, JASRI

T. Matsubara,
Y. Shoji,
Y. Hisaoka,
T. Mitsui, *NewSUBARU*, *LASTI*, University of *Hyogo*

Introduction

Applications of Short Electron Bunch

Short Pulsed X-Ray

For time resolving experiments

- \rightarrow Sub-ps (femto-second) pulse
- \rightarrow Intense ps pulse is still valuable
- Coheremt synchrotron radiation (CSR)

→ extremely strong THz radiation

The Concept

- 1. Make short and intense bunch in a linac
- 2. Let the bunch circulate in an isochronous ring
- 3. Use short pulsed X-ray train or THz CSR

Aims of the experiment

Demonstrate the method using the SPring-8 linac and NewSUBARU

Establishment of this method for our machine

- Bunch compression at the linac.
- Multi-turn circulation in the ring.

Production of Short Bunch

Optimization of bunch compression Magnetic compression along the Li-NS transport

The bunch is modulated by final accelerator structure. If the bunch is modulated like (c), the bunch is shorter. But the beam can't transport for energy acceptance limit.

Bunch Length Measurement

Time profile at the initial turn in the ring with streak camera

Normal Operation Parameters

Bunch Compression Parameters

This compressed beam was injected to NewSUBARU of quasi-isochronous condition

Multi-turn Circulation

Energy dependence of path-length

$$\Delta L = (\alpha_1 \delta + \alpha_2 \delta^2 + \alpha_3 \delta^3 + ...)L \quad \text{(here } \delta = \Delta E/E \text{)}$$

 α_n : *n*-th momentum compaction factor

NewSUBARU storage ring has negative angle bending magnet. \rightarrow control α_1

- $\alpha_1 = 1.3 \times 10^{-3}$ (normal) $\rightarrow \approx 0$ (quasi-isochronous) • $\alpha_2 = 0$ (setting resolution $\approx 10^{-3}$)
- $\alpha_3 = 1$ (fixed)

Bunch length measurement by streak camera at BL6

When $\alpha_1 = 0$, the bunch length become large soon. Best tuning is $\alpha_1 = -0.06 * 10^{-3}$ The bunch length keeps for 50 turns after injection

Tracking simulation in the non-linear rf bucket

Beam occupancy at 50 turns after injection

For higher order momentum compaction factor, the bunch length is grown up by $\alpha_1 = 0$ lattice than $\alpha_1 = -0.06 * 10^{-3}$ lattice.

CSR detection

Turn by turn CSR power

By the measurement of streak camera, bunch length is kept 50 turn. But the CSR power is decreased turn-by-turn.

Decrease of CSR power

contribution of form factor $f(\omega)$

Time profile of the injection bunch look like triangle. It is deformed from triangle to Gaussian turn-by-turn.

Results & Summary

Bunch comperession

• successfully get short bunch $1\sigma < 2.2ps$

using the achromatic transport line.

Short Bunch Circulation

• successfully keep bunch length $1\sigma < 3ps$ for 50 turns using the quasi-isochronous parameter.

Future Improvements

- Linear Accelerator
- Lower emittance and high charge beam -> install Photocathode RF-Gun ?
 Storage ring
- Better control of α_n .