

Asian Particle Accelerator Conference APAC'07- Indore, India

Status of SESAME Light Source

H. Tarawneh On behalf of SESAME Team

Outline:

- Building construction progress.
- Layout and Full Energy Option.
- Main SESAME features.
- Engineering design progress.
- Schedule.
- Scientific directions and SESAME ID's.

Building Construction Progress

Main works completed:

- 1. Steel, concrete skeleton and roof.
- 2. Plastering and ceramic tiles.
- 3. Fire hydrant system.
- 4. Foundation of the external boundary.
- 5. Civil works for the electrical substation.

Main works to be completed:

- 1. Electrical and mechanical work.
- 2. Crane installation and experimental floor final concrete layer.
- 3. Electrical Power Station and Power Line.
- 4. External areas.

Handing over the building

The building completion by the end of March-April 2007.

SESAME Building (funded by Jordan)

Ground breaking Ceremony Jan 2003

Completion Date
Spring 2007

Construction supervised by AI Balqa University

January 2007

Electrical Power Station

- Dedicated underground 8 km HV (33 kV) line.
- Voltage downgrade from 33 kV to 400 Volt through 4 x 1.5 MVA transformers.

Synchrotron-light for Experimental Science and Applications in the Middle East

7

General Parameters	Unit	Value	
Energy	GeV	2.5	
Q _x /Q _y		7.23 / 6.19	
Circumference	m	133.12	
Number of periods		8	
Bending Dipole field	т	1.45545	
Bending radius	m	5.72958	
Field index n		11	
Natural Chromaticities H/V		-15.5 / -19.0	
Momentum compaction		0.00829	
Energy loss / turn	keV	589.7	
Damping times $(\tau_E / \tau_x / \tau_z)$	msec	2.80/ 2.28/ 3.77	
RMS energy spread (σ _E)	%	0.1086	
Natural emittances (ϵ_x / ϵ_z)	nm-rad	25.74 / 0.2574	
Betatron coupling	%	1	
RF Parameters			
Frequency	MHz	499.564	
Harmonic Number		222	
Peak Voltage	MV	2.4	
RF acceptance (ε _{RF})	%	1.463	
Synchrotron frequency (v_s)	KHz	37.18	
Natural bunch length (σ_L)	cm	1.15	
Max. current (200 bunch)	mA	400	
(1/e) Lifetime	hrs	16.9	

BEAMLINES LIST

NAME/TYPE	Max Length (m)	NAME/TYPE	Max Length (m)	ID STRAIGHT TYPE
D1 IR/DIAGNOSTIC PORT		Not available		
D2 IR/DIAGNOSTIC PORT		Not available		
D3 DIPOLE PORT	26.9	Not available		
D4 DIPOLE PORT	21.2	I4 INS. DEVICE	23.6	SHORT
D5 DIPOLE PORT	24.7	I5 INS. DEVICE	28.2	LONG
D6 DIPOLE PORT	28.0	I6 INS. DEVICE	32.9	SHORT
D7 DIPOLE PORT	31.9	I7 INS. DEVICE	36.5	LONG
D8 DIPOLE PORT	34.7	I8 INS. DEVICE	36.6	SHORT
D9 DIPOLE PORT	34.3	I9 INS. DEVICE	35.3	LONG
D10 DIPOLE PORT	29.6	I10 INS. DEVICE	33.0	SHORT
D11 DIPOLE PORT	26.9	I11 INS. DEVICE	31.3	LONG
D12 DIPOLE PORT	29.2	I12 INS. DEVICE	31.3	SHORT
D13 DIPOLE PORT	27.2	I13 INS. DEVICE	28.8	LONG
D14 DIPOLE PORT	20.7	I14 INS. DEVICE	21.2	SHORT
D15 DIPOLE PORT	21.9	I15 INS. DEVICE	26.3	LONG
D16 IR/DIAGNOSTIC PORT		Not available		

MAIN SUBSYSTEMS ENGINEERING DESIGN

- MAGNET : Complete with specification of power supplies (DC) and pulsed magnets.
- VACUUM : Layout complete Detailed engineering in progress with the design of special sections (RF, Injection, ID).
- RF: Cavity (4 Cells) ELETTRA type. RF Power Amplifiers based on 80 kW CW IOT transmitters.

INSERTION DEVICES : Design of 2 ID in progress.

SAFETY and SHIELDING : In progress.

CONVENTIONAL FACILITIES and CONTROL SYSTEM : In progress.

MAGNET GIRDER SYSTEM

Modal Analysis of Magnets Girder System Assembly (FEA Study)

Thermal load, vacuum load and ribbing FEA analysis of Vacuum Chamber

Thermal Load Due to Radiation Heat Chamber Deformation Due to Vacuum Load

Vacuum Chamber Ribbing Study

HMW Vacuum Chamber with 10.5 mm Vertical Aperture.

- Deformation and buckling analysis for the vacuum vessel due to vacuum loading.
- Different materials and geometries have been considered.
- Stainless steel with 1.5 mm internal thickness seems optimal.

INJECTION SECTIONS

Scientific Directions

- Biological and Medical Sciences.
- Material Science, Physics and Chemistry.
- Environmental Sciences.
- Archaeology.
- Industrial Applications.

SESAME Phase One Beamlines

	Beamline	Energy Range	Source Type	Science Areas
1	MAD Protein Crystallography	5 – 15 keV	In vacuum undulator	Structural Molecular Biology (SMB) (Biomedical)
2	PES/ Photoabsorption Spectroscopy	50 - 2000 eV	Elliptically Polarizing Undulator	Atomic, Molecular & Condensed Matter Physics
3	SAX/ WAXS	8 - 12 keV	Undulator	SMB, Materials Science (Biomedical, Physics, Chemistry)
4	XAFS/ XRF	3 - 30 keV	2.1 Tesla MPW	SMB, Materials Science, Environmental Science, Archaeological Sciences
5	Powder Diffraction	3 - 25 keV	2.1 Tesla MPW	Materials Science, Environmental Science, Archaeological Science
6	IR Microscopy	0.01-1 keV	Large Aperture Bending Magnet	SMB, Materials Science, Environmental Science, Archaeological Sciences

2.1^(*) Tesla HMP Wiggler

Period length, mm	160
Peak Field, Tesla	2.10
The deflection parameters {max. K}	31.37
Minimum gap, mm	14.5
Number of periods	19
Total length, m	3.092
Total number of full-size poles	78
Total number of full-size PM block	80
Main PM block dimensions [mm ³]	140×52×100
End PM block dimensions [mm ³]	140×26×100
Main pole dimensions [mm ³]	100×28×80
End pole dimensions [mm ³]	100×14×66

(*) At this field value the SESAME emittance goes from 26 nm.rad to 26.5 nm.rad !

Elliptically Polarizing Undulator (EPU)

Magnet period [mm]	60	
Number of periods	28	
Magnetic gap [mm]	13	
Max. gap between adjacent assemblies [mm]	1	
PM material	NdFeB with B _r =1.22T	
Block dimension	15 mm × 40mm × 40mm	
Cuts dimension	5 mm × 5 mm	

SESAME ACCELERATOR CONSTRUCTION SCHEDULE

(G. Vignola - July 2006)

ACTIVITY	START DATE	END DATE
Machine Detailed Design	Jan 2005	Jun 2007
Component Procurement		
Call for tender for all the Subsystem Contracts for all the Subsystem Prototypes Construction and Acceptance Subsystem construction	Jan 2007 Apr 2007 Apr 2007 Apr 2007	Jul 2008 Oct 2009 Jul 2008 Apr 2010
Installation (*)		
Installation of Microtron and Booster in the new building Commissioning of Microtron and Booster Floor preparation, Utilities and Main Ring installation Commissioning of Main Ring Beamlines commissioning	Jun 2007 Jun 2008 Jun 2007 Jun 2010 Oct 2010	May 2008 Jun 2009 May 2010 Sep 2010

(*) Subject to building beneficial occupancy by May 2007.

THANK YOU