A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Shrivastava, P.

Paper Title Page
WEPMA124 Preliminary Design, Analysis and Manufacturing Aspects of Low Beta 350 MHz Reentrant Superconducting RF Cavity 497
 
  • D. K. Mishra, M. Bagre, P. R. Hannurkar, V. Jain, G. Mundra, M. Prasad, A. Puntambekar, P. Shrivastava
    RRCAT, Indore (M. P.)
 
  A superconducting reentrant cavity for low beta, high intensity beam has been designed using SUPERFISH and MAFIA. The study has been done for cavity shape optimization considering the minimization of surface fields. Further its structural design has been done and feasibility study of different manufacturing aspects has also been done. A full-scale mild steel model with copper coating has been fabricated. A twin arm mechanical tuner has been designed for slow tuning by elastic deformation. This was tested with low power RF to validate the design parameters and to check the tuning sensitivity. In this paper the design and development activity of the reentrant superconducting will be discussed  
THPMA015 Performance of 6 MW Peak, 25kW Average Power Microwave System for 10 MeV, 10 kW Electron LINAC 649
 
  • P. Shrivastava, P. Mohania, J. Mulchandani, Y. W. Wahnmode
    RRCAT, Indore (M. P.)
 
  An S-Band microawave system with peak power capability of 6MW and average power capability of 25 kW was designed, constructed and commissioned at RRCAT. The inhouse development of various microwave technologies and pulse modulator technologies was successfully achieved and the microwave system was interfaced to the 10MeV, 10kW electron LINAC. The electron LINAC could be tested to full rated energy and power using the present microwave system. The present paper highlights the details of the performance results.  
THPMA131 Indian Participation in LHC, SPL and CTF-3 Projects at CERN, Switzerland 829
 
  • V. C. Sahni, V. B. Bhanage, J. Dwivedi, A. K. Jain, P. Khare, S. Kotaiah, A. Kumar, P. K. Kush, S. S. Prabhu, A. Puntambekar, A. Rawat, A. Sharma, R. S. Shridhar, P. Shrivastava, G. Singh
    RRCAT, Indore (M. P.)
  • R. K. Sadhu
    BARC, Mumbai
 
  After signing a Protocol on 29 March 1996 to the 1991 cooperation agreement with CERN, Switzerland, India is participating in the construction of CERN’s most challenging and ambitious particle accelerator the “Large Hadron Collider” (LHC). The contributions span from hardware, software, and skilled manpower support for evaluation of some of the LHC sub-systems and presently to the support in commissioning of various subsystems of LHC. With major achievements on Indian part during the course of time CERN has now invited India to jointly participate further to build CERN’s Advanced Accelerator Projects like Super conducting Proton LINAC, SPL and Compact Linear Collider Test Facility, CTF-3. The present paper describes the achievements to date and high lights the ongoing and future collaboration activities.