A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Lee, D.

Paper Title Page
WEPMA070 Control of the Multi-Bunch Instabilities at TLS 419
 
  • C. H. Kuo, J. Chen, K. T. Hsu, S. Y. Hsu, K. H. Hu, D. Lee
    NSRRC, Hsinchu
 
  To increase stored beam current and provide stable beam for users, RF is upgraded to superconducting and top-up mode injection is operated recently at the TLS. To take advantage of these upgrade, suppress multi-bunch instabilities due to resistive wall of the vacuum chamber, cavity-like structures and ions related instability are essential. FPGA based transverse bunch-by-bunch feedback system and longitudinal feedback system was deployed. Multi-bunch instabilities was successfully suppressed when stored beam current is more than 400 mA. Lower chromaticity operation is possible with the help of transverse feedback system that is essential for injection efficiency improvement in top-up operation mode. Status of the feedback systems and analysis of the behavior of multi-bunch instability will be presented.  
WEPMA090 Status of the Superconducting Insertion Devices Control System at TLS 455
 
  • K. H. Hu, J. Chen, K. T. Hsu, S. Y. Hsu, C. H. Kuo, D. Lee
    NSRRC, Hsinchu
 
  Superconducting insertion devices installed at Taiwan Light Source to service fast growth X-ray users’ community. Control system is implemented to support the operation of all these superconducting insertion devices. Control system coordinates the operation of the main power supply and the trimming power supply to charge/discharge the magnet and provide essential interlock protection for the coils and vacuum ducts. Quench detection and various cryogenic interlock are designed to protect the system. Friendly user interface and control applications are developed to support routine operation. Diagnostic the trip of superconducting insertion devices related to machine operation is also addressed. Design consideration and details of the implementation will be summary in this report.  
WEPMA096 Rejuvenation of Linac Control System for TLS 458
 
  • C. Y. Wu, J. Chen, K. T. Hsu, S. Y. Hsu, K. H. Hu, J.-Y. Hwang, C. H. Kuo, D. Lee, K.-K. Lin, C.-J. Wang
    NSRRC, Hsinchu
 
  The pre-injector control system is a turn-key system, which was deployed 15 years ago. It is complicated and out-of-date nowadays in terms of system integration and hardware upgrading. It must be modernized to ensure its performance and reliability, and most importantly, to facilitate system maintenance. Modernization involves upgrading to enhance functionality, to prevent obsolesce of out-of-date control modules, and to replace old parts. The purpose of the upgrade plan is to replace the pre-injector control system by a new unit which has the same control environment as that of the main control system of the NSRRC accelerator facilities. Thus, the control system maintenance, as a whole, will be made substantially easier than the original system.