A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Dutta, A.

Paper Title Page
TUPMA097 Characteristics of the Magnetic Channel in the Yoke Hole of K-500 Superconducting Cyclotron 241
 
  • J. Pradhan, R. K. Bhandari, S. Bhattacharya, U. Bhunia, J. Debnath, M. K. Dey, A. Dutta, C. Mallik, Z. A. Naser, S. Paul
    DAE/VECC, Calcutta
 
  The detail magnetic field measurement of K-500 superconducting cyclotron has been carried out. The last magnetic channel of the extraction system placed in the yoke hole of the cyclotron before external beam line is active, unlike others, which are all passive. This channel comprises a coil and a special shaped iron to produce both quadrupole and dipole field for focussing and radially aligning the different ion species coming out from the cyclotron, with the external beam transport line. The magnetic field inside the channel along with the outside stray field has been measured for different channel currents as well as main magnet excitations. A 3-D model of the full magnet is constructed using magneto- static code RADIA [2] to simulate the yoke field. This paper reports the comparative study of measured and calculated field and studies the trajectories for the representative ions through the stray field calculated from the model. The later being used to locate the starting point (or matching point) for the external beam transport line  
WEPMA015 Characteristics of Beam Extraction System of K500 Superconducting Cyclotron 357
 
  • S. Paul, R. K. Bhandari, J. Debnath, M. K. Dey, A. Dutta, C. Mallik, J. Pradhan
    DAE/VECC, Calcutta
 
  Extensive Magnetic Field measurement of the K500 Superconducting Cyclotron has been completed. In this paper we report the beam dynamical calculations along the extraction system based on the measured magnetic field data. The beam matching to the external beam transport system, for different ion species spanning the operating region is also explored.  
THPMA016 Median Plane Magnetic Field Mapping for Superconducting Cyclotron (SCC) in VECC 652
 
  • A. Roy, T. Bhattacharjee, R. B. Bhole, U. Bhunia, Chaddha, N. Chaddha, J. Debnath, M. K. Dey, A. Dutta, C. Mallik, C. N. Nandi, Z. A. Naser, G. P. Pal, S. Pal, S. Paul, J. Pradhan
    DAE/VECC, Calcutta
 
  The magnetic field upto 29 inch radius on median plane of SCC Magnet (Peak field 5.8T) is measured over its operating range. A client-server system is developed to minimise mapping time and human intervention. The magnetic field is mapped at radial interval of 0.1 inch and angular interval of 1 degree. The complete map of 360 degree comprised of about 100K field points is obtained in less than 100 minutes. The field mapping system is designed to work as PC based TCP Client-Server to reduce the design complexity, system overload and debugging effort. The Server program is developed as windows console in ‘C’ and the Client is developed using LabView to provide a user friendly operation console along with online preliminary display and analysis of field data. This architecture provides a reliable and easily modifiable control s/w. The correctness of the magnet assembly is calculated from the acquired data, which in-turn represents the correctness of measurement system. A detailed study of the magnet characteristic is done. The first harmonics of the fields at different radii are obtained at all magnet excitation and corrected by coil-centering and shims placement.  
THPMA022 Design of the Proposed 250 Mev Superconducting Cyclotron Magnet 661
 
  • M. K. Dey, R. K. Bhandari, U. Bhunia, J. Chaudhuri, A. Dutta, A. Dutta Gupta, C. Mallik, S. Murali, J. Pradhan, S. Saha, S. S. Sur
    DAE/VECC, Calcutta
 
  VECC has proposed a project for the design and development of a 250 MeV superconducting proton cyclotron, which may be used in therapy. In this paper we describe the preliminary design calculations for the superconducting magnet. Hard-edge approximation method has been adopted for finding the poletip geometry to meet the basic focusing requirements of the beam. The uniform-magnetization method has been applied to calculate the 3D magnetic field distribution due to saturated iron poletips, to verify the beam dynamical issues and optimize the poletip geometry. GM type closed cryo-cooler technology is being considered for steady state liquifaction of evapourated He gas from magnet cryostat.