A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Bhattacharjee, T.

Paper Title Page
THPMA016 Median Plane Magnetic Field Mapping for Superconducting Cyclotron (SCC) in VECC 652
 
  • A. Roy, T. Bhattacharjee, R. B. Bhole, U. Bhunia, Chaddha, N. Chaddha, J. Debnath, M. K. Dey, A. Dutta, C. Mallik, C. N. Nandi, Z. A. Naser, G. P. Pal, S. Pal, S. Paul, J. Pradhan
    DAE/VECC, Calcutta
 
  The magnetic field upto 29 inch radius on median plane of SCC Magnet (Peak field 5.8T) is measured over its operating range. A client-server system is developed to minimise mapping time and human intervention. The magnetic field is mapped at radial interval of 0.1 inch and angular interval of 1 degree. The complete map of 360 degree comprised of about 100K field points is obtained in less than 100 minutes. The field mapping system is designed to work as PC based TCP Client-Server to reduce the design complexity, system overload and debugging effort. The Server program is developed as windows console in ‘C’ and the Client is developed using LabView to provide a user friendly operation console along with online preliminary display and analysis of field data. This architecture provides a reliable and easily modifiable control s/w. The correctness of the magnet assembly is calculated from the acquired data, which in-turn represents the correctness of measurement system. A detailed study of the magnet characteristic is done. The first harmonics of the fields at different radii are obtained at all magnet excitation and corrected by coil-centering and shims placement.  
THPMA130 Introduction of EPICS in VEC & SCC Control Systems 827
 
  • T. Bhattacharjee, S. Bandyopadhyay, R. B. Bhole, Chaddha, N. Chaddha, A. De, Kundu, K. C. Kundu, J. Misra, S. Pal, A. Roy, B. Sarkar
    DAE/VECC, Calcutta
 
  As a part of computerization of the VEC and SCC Control System, using a standard open-source software tool for designing distributed control system named as EPICS (Experimental Physics and Industrial Control System), several IOCs' (I/O controller) have been developed to control and monitor the Main Magnet Power Supply (MPS), Beam line MPS, Deflector PS, Beam line instruments and LCW (Low Conductivity Water) system. The device layer of IOC, responsible for communication with MPS distributed among several multi-drop networks (RS485) ensures reliable and fast response while setting several MPS simultaneously. Process parameters e.g. water level, temperature and conductivity in different subsystems are measured using standard industrial sensors. An IOC has been developed for acquiring process data form sensors using Modbus-TCP based distributed DAQ modules on Windows platform. An IOC is being developed for affecting the necessary control for conditioning of the electrostatic deflector with facility for supervisory intervention. Application of EPICS in sub-systems will lead towards a unified distributed control architecture for auto beam tunning of the machines.