A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Agarwal, R.

Paper Title Page
THPMA043 Development of 3 MeV, 30 kW DC Electron Accelerator at EBC, Kharghar 682
 
  • K. C. Mittal, S. Acharya, R. Agarwal, R. Barnwal, D. P. Chakravarthy, A. S. Chawala, A. R. Chindarkar, S. R. Ghodke, B. S. Israel, A. Jain, D. Jayaprakash, M. K. Kumar, M. K. Kumar, R. L. Mishra, K. V. Nagesh, K. Nanu, M. K. Pandey, G. P. Puthran, R. N. Rajan, S. R. Raul, A. K. Ray, P. C. Saroj, D. K. Sharma, V. Sharma, R. Shilendra, S. K. Suneet, S. B. Supriya, D. P. Suryaprakash
    BARC, Mumbai
 
  A 3 MeV, 30 kW DC industrial electron accelerator has been designed and is in advanced stage of development at EBC, Kharghar, Navi Mumbai. Electron beam at 5 keV is generated in electron gun with LaB6 cathode and is injected into accelerating column at a vacuum of 10-7 torr. After acceleration, the beam is scanned and taken out in air through a 100 cm X 7 cm titanium window for radiation processing applications. The high voltage accelerating power supply is based on a capacitive coupled parallel fed voltage multiplier scheme operating at 120 kHz. A 50 kW oscillator feeds power to high voltage multiplier column. The electron gun, accelerating column and high voltage multiplier column are housed in accelerator tank filled with SF6 gas insulation at 6 kg/sq.cm. The accelerator is located in a RCC building with product conveyor for handling products. A central computerized control system is adopted for operation of the accelerator. Accelerator is in the advance stage of commissioning. This paper describes the design details and current status of the accelerator and its various subsystems.  
THPMA064 Development of a 200keV Linear Induction Accelerator 720
 
  • K. V. Nagesh, S. Acharya, R. Agarwal, D. P. Chakravarthy, S. Mitra, K. C. Mittal, D. D. Praveen Kumar, R. N. Rajan, S. R. Raul, P. C. Saroj, A. S. Sharma, D. K. Sharma
    BARC, Mumbai
 
  Electron Linear Induction Accelerator (LIA) are for applications for applications in High Power Microwaves (HPM), high gradient accelerators, flash X-Ray radiography (FXR), flue gas clean-up, detoxification of chemicals, cross-linking of polymers, sterilization of food and medical devices, etc. The LIA-200 being developed at APPD/BARC consists of three main phases of pulse compression and voltage amplification, viz; (i)solid-state pulse modulator uses semiconductor devices, (ii)Pulse compression and voltage amplification stages, steps up to 200kV, 5 micro-seconds and compresses these pulses to 75kV, 10kA, 50ns in five stage and (iii)three induction cavities in ADDER mode for relativistic electron beam generation, with matched impedance of 5 ohms. Metglas cores have been used in the switches, cavities and pulse transformers. Deminaralized water capacitors and water transmission lines have been used for low impedance energy storage and compactness. The complete system has been assembled and ready for commissioning. LIA system will be operated from a PLC based control system which is under testing.