A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Acharya, S.

Paper Title Page
THPMA043 Development of 3 MeV, 30 kW DC Electron Accelerator at EBC, Kharghar 682
 
  • K. C. Mittal, S. Acharya, R. Agarwal, R. Barnwal, D. P. Chakravarthy, A. S. Chawala, A. R. Chindarkar, S. R. Ghodke, B. S. Israel, A. Jain, D. Jayaprakash, M. K. Kumar, M. K. Kumar, R. L. Mishra, K. V. Nagesh, K. Nanu, M. K. Pandey, G. P. Puthran, R. N. Rajan, S. R. Raul, A. K. Ray, P. C. Saroj, D. K. Sharma, V. Sharma, R. Shilendra, S. K. Suneet, S. B. Supriya, D. P. Suryaprakash
    BARC, Mumbai
 
  A 3 MeV, 30 kW DC industrial electron accelerator has been designed and is in advanced stage of development at EBC, Kharghar, Navi Mumbai. Electron beam at 5 keV is generated in electron gun with LaB6 cathode and is injected into accelerating column at a vacuum of 10-7 torr. After acceleration, the beam is scanned and taken out in air through a 100 cm X 7 cm titanium window for radiation processing applications. The high voltage accelerating power supply is based on a capacitive coupled parallel fed voltage multiplier scheme operating at 120 kHz. A 50 kW oscillator feeds power to high voltage multiplier column. The electron gun, accelerating column and high voltage multiplier column are housed in accelerator tank filled with SF6 gas insulation at 6 kg/sq.cm. The accelerator is located in a RCC building with product conveyor for handling products. A central computerized control system is adopted for operation of the accelerator. Accelerator is in the advance stage of commissioning. This paper describes the design details and current status of the accelerator and its various subsystems.  
THPMA064 Development of a 200keV Linear Induction Accelerator 720
 
  • K. V. Nagesh, S. Acharya, R. Agarwal, D. P. Chakravarthy, S. Mitra, K. C. Mittal, D. D. Praveen Kumar, R. N. Rajan, S. R. Raul, P. C. Saroj, A. S. Sharma, D. K. Sharma
    BARC, Mumbai
 
  Electron Linear Induction Accelerator (LIA) are for applications for applications in High Power Microwaves (HPM), high gradient accelerators, flash X-Ray radiography (FXR), flue gas clean-up, detoxification of chemicals, cross-linking of polymers, sterilization of food and medical devices, etc. The LIA-200 being developed at APPD/BARC consists of three main phases of pulse compression and voltage amplification, viz; (i)solid-state pulse modulator uses semiconductor devices, (ii)Pulse compression and voltage amplification stages, steps up to 200kV, 5 micro-seconds and compresses these pulses to 75kV, 10kA, 50ns in five stage and (iii)three induction cavities in ADDER mode for relativistic electron beam generation, with matched impedance of 5 ohms. Metglas cores have been used in the switches, cavities and pulse transformers. Deminaralized water capacitors and water transmission lines have been used for low impedance energy storage and compactness. The complete system has been assembled and ready for commissioning. LIA system will be operated from a PLC based control system which is under testing.  
THPMA070 Characterisation of Amorphous Magnetic Material with Multiple Pulse Excitation 732
 
  • A. S. Sharma, S. Acharya, K. V. Nagesh
    BARC, Mumbai
  • U. Kumar, G. R. Nagabhushana
    IISC, Bangalore
 
  An experimental investigation for the understanding of magnetic core saturation behaviour under pulse excitation is presented in this paper. The effect of repetitive shots, after resetting, on the magnetic properties of toroidal amorphous core of size 160/240/25 mm is reported. This study is made using 20kV, 20, and 200ns square pulse source, to realize the various steps which an amorphous core undergoes on saturation as well as corresponding changes in magnetic parameters viz. magnetization force, total flux swing and relative permeability. The most significant effect of pulsing is seen at higher values of operating flux, compared to lower flux regimes. Effects of number of turns and input power level to the core are also shown in this paper. It has been shown that the total energy required to saturate the core in multiple pulses is less if peak input is smaller than that in case of higher peak pulse excitation. Keyword: amorphous core, multiple pulses, effect of turns, pulse excitation