A PRACTITIONER'S GUIDE TO CHEAP CRYOSTAT CONSTRUCTION OF THE ENERGY RECOVERY SUPERCONDUCTING LINAC (ERL) DRIVEN LIGHT SOURCES

Eisuke J. Minehara, Ryoichi Hajima, Masaru Sawamura, Ryoji Nagai, Nobuyuki Nishimori, Nobuhiro Kikuzawa, and Toshihiko Yamauchi FEL Laboratory at Tokai, JAERI, 2-4 Tokai, Ibaraki, 319-1195 JAPAN

Abstract

A 4th generation synchrotron radiation light source for a large-scale user facility like the 3rd ones has been recently discussed to realize using a superconducting RF linac based X-ray free electron laser (FEL) [1] or an energy recovery superconducting linac (ERL) driven light source [2]. In order to realize both of them, we need very large number of low-temperature cryostats to run them routinely and efficiently. A half kilomter-long superconducting RF linac cryostat is conceptually considered here and discussed to optimize major operational characteristics of the advanced lowtemperature cryostat for the ERL light source near future.

In addition to them, we summarize the JAERI ERL FEL zero-boil off cryostat design, its operational characteristics, and non-stop operation records over these 13 years and other cryostat related activities.

CRYOSTAT CONSIDERATION FOR INDUSTRIAL ERL LIGHT SOURCES

In order to realize quickly an industrial energy recovery linac (ERL) light source, a half kilomter-long superconducting RF linac cryostat is conceptually designed and discussed to optimize major operational characteristics of the advanced low-temperature cryostat for an ERL light source near future. A low temperature cryostat for superconducting RF linacs and other superconducting devices should be designed and made to minimize its heat invasion through the heat bridges between the room and low temperature parts. The cryostat also should be designed and made to minimize total number of the heat cycles for the rest of its life after the initial test. We can expect that the total number of the heat bridges is roughly proportional to the number of the cryostat, and a life interval between two contiguous cryostat malfunctions inversely proportional to the number of the heat cycles. Therefore, if we can design and make a single and long cryostat to realize the operation less than a half cycle for the rest of its life, we can run our cryostat for a very longer interval than tens of years and with minimum electricity. In addition to them, we plan to summarize the JAERI ERL FEL zero-boil off cryostat design, its operational characteristics, and nonstop operation records over these 12 years and other cryostat related activities in the poster presentation.

Cryostat Heat Load

Figure, Static Cryostat Heat Load and No. of Cryostat.

Each cryostat usually has one or two liquid He feeding ports, and two beam pipes, several RF main and higher mode couplers. Here we assumed that the ERL has 800 cavities, a 400m-long accelerating length, average acceleration gradient of 10-15MeV/m, a half kilometerlong cryostat and total electron energy 4-6GeV. Horizontal axis is number of cavities installed in each cryostat, vertical one total static heat load. Minimal static heat load will be realized if we can choose a single and longest cryostat, and the maximum load the shortest cryostat. Because we intend to use the cryostat for the ERL RF power for the main accelerator linac will be

ERL, RF power for the main accelerator linac will be recovered and the power supply will feed a large number of cavities. In the figure, there are 3 cases of cavity number fed by one RF port, i.e., 1, 4, and 40, and "Total Heat Loadp20", "Total Heat Loadp20", and "Total Heat Loadp2" indicate them respectively.. The maximum heat load became 3.2kW at low temperature, and the minimum 24W.

The heat shield of the long and single cryostat will be cooled down by using integrated refrigerators system like existing JAERI zero-boil off cryostat system [3]. In the existing zero-boil off cryostat, a Gifford-McMahon type 20K/80K He gas refrigerator has been used to cool down the shield. The new cryostat heat shield will be cooled down using tens of He-gas Pulse Tube type refrigerators [4] to realize vibration-free and malfunction-free operation of the cooling in comparison with the noisy one of the GM refrigerator because the Pulse Tube one has no movable parts except for the warm.

We have kept the whole cryogenic system running and have performed a non-stop cooling operation without increasing the He-vessel temperature for 3 years except for instant or very short power failures.

REFERENCES

- [1] TESLA Technical Design Report, DESY 2001-011, March 2001.
- [2] I.V.Bazarov *et al.*, "The energy recovery linac (ERL) as a driver for X-ray.
- [3] E.J.Minehara et al., pp159-161, in the proceedings of Particle Accelerator Conference, 1995, Dallas.
- [4] E.J.Minehara et al., Free Electron Laser Challenge 2(SPIE) Vol.3614, pp.62-71, 1999.
- [5] E.J.Minehara et al., Nucl. Instrum. Methods Phys. Res. Sect.A445, 183 (2000).
- [6] Helium Gas Pulse Tube Refrigerator Operation Manual, Air Water Company Limited, Osaka, Sakai, Japan, private communication, in Japanese.