EPICS BASED BEAM ORBIT MEASUREMENT SYSTEM FOR KEK PF-AR

T. Obina, J. Odagiri, N. Yamamoto, KEK, Tsukuba, Japan Ge Lei, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China Zheng Lifang, Shanghai Synchrotron Radiation Center, Shanghai, China

Abstract

A new beam position measurement system for KEK PF-AR was constructed employing EPICS(Experimental Physics and Industrial Control system). Two new record types were developed for this system. The EPICS database includes more than 3,500 records and SNL programs are used to operate electric relay switching beam position monitors (BPMs). Measured orbit data is agreed with the data which is taken by the existing HIDIC mini computer system. The measurement time is improved with the new system.

1 INTRODUCTION

The PF-AR (Advanced Ring), 6.5 GeV electron storage ring for pulsed X-rays, was originally constructed as an injection booster to TRISTAN [1] main ring, and had also been used as a synchrotron radiation source during the intervals of injection to the TRISTAN. The upgrading project of PF-AR [2, 3] which intend to reconstruct the ring as the SR light source, is under way.

Replacement of the control system with the system reliable and easy for machine operation is the part of the project. In order to minimize costs and loads of the replacement, device interface layer under CAMAC has not changed. We only replace the existing HIDIC minicomputer system with EPICS IOC (VME computer, CPU: Power PC 750, CAMAC Serial Driver: VSD 2992). In this study, an auxiliary crate controller, which is controlled from IOC, was installed on each CAMAC crate to ensure simultaneous controls from HIDIC and EPICS.

2 HARDWARE SETUP

The PF-AR has 83 sets of electrostatic beam position monitors (BPMs), each of which consists of 4 electrodes[4]. Electric signal of each electrode is selected by coaxial relay placed in the AR tunnel. And the output from the relay is fed to one of four local control rooms located on east, west, south and north part of the ring. Signals are processed by the detector located in each local control room and digitized by 12-bit CAMAC ADC for beam position calculation. Several kind of CAMAC modules are used to measure the beam position: AIO (Active Input/Output register) module to control the coaxial relay, SIG (Status Input Gate) to monitor the hardware status.

3 SOFTWARE DEVELOPMENT

3.1 New record type

Two new record types were created, one is to calculate the horizontal and vertical (X and Y) positions and a standard deviation of each electrodes, the other is to concatenate the single position values into a big array to be displayed in MEDM (Motif-based Editor and Display Manager). Both records are designed so that they can be applicable to the other EPICS based system easily.

bpmArRecord Then main purpose of the new record type bpmArRecord is to calculate out the beam position (X, Y). The CNAM field is used to specify a user defined conversion function name. The default conversion function implements the following algorithm:

- Apply correction factors for cable loss to each signal from four electrodes.
- Check the consistency
 - Calculate (X,Y) with picking up only three signals out of four for all possible combinations (abc/bcd/cda/dab) by using a fourth order polynomial for its own.
 - Calculate variances of result in the previous step, σ_x and σ_y .
 - compare the variance with the standard variance to check the consistency.
- Return the final beam position (X, Y) when status is normal, otherwise returns error code.

The record was created based on bpmKekRecord by adding about 60 fields, such as the fields of signal values from the four electrodes of a BPM, the correction ratios of the cable loss, size of elements for each set of coefficients, maximum variance, σ , specified by user, etc.

Values of these coefficients (mapping data and setting error of beam duct) is taken from the data stored in HIDIC system. We transferred these data on HIDIC system to the ascii file on UNIX workstation, then converted them to the form which can be directly downloaded to the IOC using a program written for it.

aConcatRecord In order to display all the calculated beam positions, X and Y, for each station and also for all stations, a new record type aConcatRecord was created. It has up to 12 input links to get input data and concatenate them into an array pointed by VAL field. The input links

Figure 1: A block diagram of EPICS based beam position measuring system.

can be any record type of EPICS database including aConcat record, so data which has more than 12 elements can be concatenated using two or more aConcat records. The NELM field must be specified correctly when an aConcat record in the database is created.

3.2 Database

CapFast¹ is used to create most of the database logics for the AR BPM measurement system. Some logics are created by editing the ascii files of database.

The database logic of AR BPM measurement system can be classified into 4 types: 1) IOC read/write logics, 2) relay logics, 3) timestamp logics and 4) data concatenation logics. Four template files, bpm1.db, bpmrelay.db, time.db and wf.db, have been created corresponding these four kinds of logics.

The IOC read/write logic (bpm1.db) is the largest one, which contains the logic for each BPM to clear BPM_DONE and BPM_ERR flags, to enable CAMAC AIO module, to set time delay, and to get input data from the four electrodes one by one. Figure 2 shows a CapFast schematics for this logic. The four database parameter files for the BPM read/write logic of AR east, west, north and south were created from some parameter files of HIDIC control system.

For each station, four database parameter files were created. Taking AR east station as an example, the parameter files are bpmArEast.dbprm, relayArEast.dbprm, timeArEast.dbprm and wfArEast.dbprm. The EPICS command "dbLoadTemplate" is applied to create run-time database from the template and parameter files. For example,bpmArEast.dbprm gives parameters for read/write logics of 20 BPMs in AR east station. By using the command "dbLoadTemplate bpmArEast.dbprm > bpmAr-East.db" the final run-time database file for AR east "bpmArEast.db" is generated. In the similar way other database files for AR west, north and south stations are also created.

Figure 2: CapFast schematics for 1 BPM (4 electrodes).

Besides, there is a parameter file containing the parameters for timestamp records to get the timestamp information for all BPMs. And there is a run-time database "wfAr-All.db" to trigger the measurement of four stations concurrently, to concatenate all the X and Y position data from four stations into two arrays separately to be displayed graphically. So altogether there are 4 database template files, 17 database parameter files, and 18 final run-time database files which can be loaded into IOC memory.

3.3 SNL

The layers of SNL logic are used to achieve the measurement. One is for the measurement in a single station. The other manages the concurrent measurement over the four stations. In each station, a SNL program is used to do the following tasks:

- start the measurement,
- switch the measurement from one BPM to the next one,
- set the starting and ending timestamps,

 $^{{}^{1}}$ CapfastTM is the name of schematic editor, developed and sold by Phase Three Logic, Inc., Beaverton, Oregon, USA.

- reset relay drivers when all BPMs in one station have been tested,
- trigger the aConcat records to be processed when all bpmAr records in one station have been processed.

The BPM_DONE and BPM_ERR flags are monitored in the SNL programs for each BPM. In the database logic, BPM_DONE is set to "1" when the four electrodes of the BPM have been read, and BPM_ERR is set if something wrong. Therefore when any of them is set to "1" the SNL programs switches the measurement to next BPM.

Another layer of SNL logic is to deal with all BPMs of the four stations. These logics are running on AR east IOC.

3.4 Display

MEDM is used to create graphical user interfaces to control the measurement and monitor interested results for this measurement system as shown in Fig. 3. For each station there are two kinds of MEDM adl files created, one is to enable the measurement, display some key information. The contents are summarized as:

- buttons to enable the power and start the measurement
- label to display the status of the relay power: "enabled" or "disabled"
- labels to display the start_measuring timestamp, the end_measuring timestamp and the time "elapsed"
- labels to monitor the BPM_DONE flag, BPM_ERR flag and the four electrodes' write-out, read-in for each BPM
- labels to display the calculated X position and Y position for each BPM

Another kind of adl file is to plot sets of values of the calculated X and Y positions in a graph, for the east, west, north, south stations separately and for all BPMs, too. The button to start the measurement of all BPMs in the four stations is created in the bpmArEast.adl, which is also used to control and monitor BPMs for the east station.

BPH TEST	r system for ar east	start	DHALE	RADMIE:RELATI	ST DUPMER	0	HOM: E: TIME: STARTED	ARDM:E:TDME:D	ADED ARONS
	Electrode #	Electrode B	Electrode	• C	Electrode	J]	X / Y	BPH_DONE	
NE13	ARGH-E:NEIISR RD AID ARGH-E:NEIISR READ ADC	ARGHLE:NEI3:8 RD AIO ARGHLE:NEI3:8 READ ADD	ARDINEENED ARDINEENED	SIC RD AIO SIC READ ADC	AREPSESNESS AREPSESNESS	D RD AIC	ARDHEELN DC ARDHEELN	1 DNE	
NE14	ARBRICESNEL4CH RD ALD ARBRICESNEL4CH READ ADD	HEBMILEINEI4:8 RD AIO HEBMILEINEI4:8 RD AIO	ARBRUEINELA	4:C RD ALO	ARBHUEUNELA ARBHUEUNELA	D RD ALC	DC HRIMIELINE	1 DNE	
NE15	ARBHOESNESSOR RD ALD ARBHOESNESSOR READ ADD	AFOM:E:NE15:3 RD A10 AFOM:E:NE15:3 READ ADD	ARDINEENED	51C RB ATO 51C READ ADC	ARIPUE:NEIS ARIPUE:NEIS	D RD AIC	ARDHEEEN	1 DONE	
NE16	ARBMIEINEIGIA RO ADD ARBMIEINEIGIA READ ADC	ARBRIGEINE1618 RD A00 ARBRIGEINE1618 READ ADC	ARBM:E:NE16 ARBM:E:NE16	SIC RD A10 NC READ ADC	ARBM:E:NELE ARBM:E:NELE	10 RD ADD 10 READ A	KFBH:E:NE	1 DONE 1 ERR	
NE17	HARMSEINELTSA RO HOO HARMSEINELTSA READ HOC	AROMIE:NE17:8 RD A00 AROMIE:NE17:8 READ ADD	ARBH:E:NE12 ARBH:E:NE17	TIC RD A10 TIC READ FOC	ARON:E:NE13 ARON:E:NE17	10 R0 A00 10 R0R0 A	AFORSESN C AFORSESN	1 10NE 1 DRR	
NE18	ARSHUESNESSUR RD ASD ARSHUESNESSUR READ ADD	HADREE:NEIDED RD AID HADREE:NEIDED READ HOD	ARGINEEINELI ARGINEEINELE	01C RD ALO B1C READ ADC	ARDROESNESS ARDROESNESS	DED RD ALC	ARGHIELN	1 DINE	
NE19	ARSH:E:NEIS:R RD AID ARSH:E:NEIS:R READ ADC	ARGHLE:NE19:3 R0 A10 ARGHLE:NE19:3 READ ADD	ARBITUELNE1S	9:C RD ATO 9:C READ ADC	ARBH:E:NE15 ARBH:E:NE15	DED RO AIO	ARDHEEENE DC ARDHEEENE	1 DONE DR	
NE20	ARBRIDESNE2058 RD A10 ARBRIDESNE2058 READ ADC	ARBHIELINE2018 RB A10 ARBHIELINE2018 READ ADD	ARBITLE: NE2	OIC RD ALO	ARBRIDEINE2N ARBRIDEINE2N	DED RD ALC	ARBM:E:N	DONE ERR	
NE21	HERELNEZISH RD ADD HERELNEZISH READ ADC	ARBH:E:NE21:8 RD A00 ARBH:E:NE21:8 READ ADD	ARIH:E:NE21 ARIH:E:NE21	LIC RD A10 LIC READ FOC	AROM:E:NE21 AROM:E:NE21	13 R3 A00 13 READ A	AFOM:E:NE	ERR E	
0022	ARBM:E:EE22::A RD ADD ARBM:E:EE22::A READ ADC	ARBM:E:EE22:8 RD ADD ARBM:E:EE22:8 READ ADD	ARBM:E:EE22 ARBM:E:EE22	25C RD A10 15C READ ADC	ARBM:E:EE22 ARBM:E:EE22	10 RD ADD 10 READ A	AFSM:E:EE	E DINE ER	
SE21	ARBM:E15E21:R RD ADD ARBM:E15E21:R READ ADD	ARBM:E:SE21:B RD ADD ARBM:E:SE21:B READ ADD	ARIM:E:SE21 ARIM:E:SE21	LIC RD A10 LIC READ FOC	ARIN:E:SE21 ARIN:E:SE21	10 R0 A00 10 R0AD A	AFSM:E:SE	E DONE ERR	
SE20	HRBM:E1SE201A RD ADD HRBM:E1SE201A READ ADC	ARBM:E:SE20:8 RD ADD ARBM:E:SE20:8 READ ADD	ARBM:E:SE20 ARBM:E:SE20	NOC RD A10	ARBM:E:SEX ARBM:E:SE20	10 R0 A00 10 R0A0 A	AFSM1E1SE DC AFSM1E1SE	ERR ERR	
SE19	ARBM:E:SE19:A RD A10 ARBM:E:SE19:A READ ADC	ARGM:E:SE19:3 RD A10 ARGM:E:SE19:3 READ ADD	ARBIN:E:SE15 ARBIN:E:SE15	9:C RD ALO 9:C READ ADC	ARBH:E:SE15 ARBH:E:SE15	D RD ALC	ARBM:E:SE IC ARBM:E:SE	1 DONE	
5E10	HADMLEISEIDLA RD ADD HADMLEISEIDLA READ ADC	WOM:E:SE10:8 RD ADD WOM:E:SE10:8 READ ADD	ARIM:E:SE10 ARIM:E:SE10	NOC RD A10 NOC READ ADC	AROM:E:SELO AROM:E:SELO	13 RD 400 13 READ A	AFOM:E:SE	1 DONE 1 ERR	
SE17	ARBM:E:SE17:A RD A10 ARBM:E:SE17:A READ ADC	ARSM:E:SE17:8 R0 A10 ARSM:E:SE17:8 R0A0 A00	ARBINELSEL	7±C RD AIO 7±C READ ADC	ARBM:E:SE17 ARBM:E:SE17	TO RD ALC	ARBM:E:SE	1 DR	
SE16	ARSM:E:SE16:A RD A10 ARSM:E:SE16:A READ ADC	ARGHIELSEIGEB RD AID ARGHIELSEIGEB READ ADD	ARBIN:E:SE10 ARBIN:E:SE10	GIC RD ATO SIC READ ADC	ARBM:E:SE10 ARBM:E:SE10	D RD ATC	ARBM:E:SE DC ARBM:E:SE	1 DONE 1 ERR	
SE15	ARBMOE:SEISOR RD AID ARBMOE:SEISOR READ ADC	HADM:E:SE15:3 RD A10 HADM:E:SE15:3 READ ADD	ARGIN:E:SE15 ARGIN:E:SE15	5:C RB ATO 5:C READ ADC	ARIM:E:SE19 ARIM:E:SE19	D RD AIC	ARDM:E:SE DC ARDM:E:SE	DI DONE	
SE14	ARBM:E:SE14:A RD ADD ARBM:E:SE14:A READ ADC	ARBM:E:SE14:8 RD ADD ARBM:E:SE14:8 READ ADD	ARBM:E:SE14 ARBM:E:SE14	4:C RD AID 1:C READ ADC	ARGHIELSELA ARGHIELSELA	10 RD ADD 10 RDAD A	AFBM:E:SE	1 DINE	
SE13	ARBMCE:SEIJCA RD AID ARBMCE:SEIJCA READ ADC	ARDM:E:SE13:0 RD A10 ARDM:E:SE13:0 READ ADD	ARGIN:E:SELT ARGIN:E:SELT	SIC RD ATO	ARIM:E:SEIT	D READ ALC	ARBM:E:SE	1 DONE	
SE12	ARGH:E:SE12:A RD A10 ARGH:E:SE12:A READ ADC	ARGH:E:SE12:8 RD A10 ARGH:E:SE12:8 READ ADD	ARGINEELSELS ARGINEELSELS	2:C RB ATO 2:C READ ADC	ARIM:E:SE12 ARIM:E:SE12	TO READ ALC	ARBM±E±SE DC ARBM±E±SE	1 DINE	

Figure 3: Editing the panel for one local control room.

4 RESULTS AND CONCLUSION

All the measurement can be done in 12 seconds, including getting signals from the four electrodes of each BPM and

calculating X/Y positions and SIGMAs of BPMs and concatenating them into 10 arrays (2 arrays for each station, and 2 arrays for all BPMs). Most of measurement time is spent to wait ready signal from relay switch. This was mainly achieved by doing the measurements for the four stations concurrently.

Python scripts and MatLab are used to plot and compare 15 sets of date from the HIDIC system (the original one) and the result from the new BPM measurement system using EPICS as shown in Fig. 4. Measured data seems to

Figure 4: Beam position measured by HIDIC and EPICS.

agree with each other, however, there is a slight difference between two systems. The possible reasons are a reliability of coaxial relay or a difference of average function. HIDIC system use 8 channels of scanning ADC, whereas EPICS used only one channel at this time. Because the coaxial relay (mechanical switch) will be replaced by mercury relay switches during the shutdown period, reliability of the relay will remarkably be improved.

Commissioning with the electron beam will start at the beginning of January 2002. We will investigate the system further before commissioning. In order to achieve the more fast data acquisition, we are planning to build a new detector circuits and switching system.

5 ACKNOWLEDGMENTS

The authors are greatly indebted to M. Tejima, S. Yoshida and other members of the KEKB control group for their great support to this work.

6 REFERENCES

- Shin-ichi Kurokawa, *et al.*, "The TRISTAN Control System", Nucl. Instr. and Meth., A247, (1986) pp. 29-36 and references therein.
- [2] "Design Report on Advanced Ring for Pulse X-rays (PF-AR)", KEK Report 97-2 (1997).
- [3] Photon Factory Activity Report 17(1999)114
- [4] T.Ieiri, et al., "Performance of the Beam Position Monitors of the TRISTAN Accumulation Ring", Proc. 5th Symposium on Acc. Sci. Tech., Tsukuba (1984)154