

SRF for Future Circular Colliders

Rama Calaga, CERN SRF2015, September 18, 2015

Acknowledgements:

O. Brunner, A. Butterworth, E. Jensen, E. Montesinos, E. Shaposhnikova

May 2015: Record collisions at 13 TeV CM!

FCC Study Scope

FCC-hh: 50 TeV proton collider as a long term goal

FCC-ee: 45.5-175 GeV e⁺e⁻ collider as an intermediate step

FCC-he: Study integration aspects for electron-ion collisions

Main Goal

- -Complete exploration of Higgs
- -Direct/indirect probes beyond SM

Dedicated SC R&D programs

- -16 T dipole magnets for 100 TeV in 100 km
- -SRF technologies & RF power sources

Livingston Plot

Parameters, FCC-hh

Main goal increase the LHC energy by factor \sim 7 Increase ramp rate (\sim 30 min) by factor \sim 18 from LHC

	LHC	HL-LHC	FCC-hh	
Energy [TeV]	7	7	50	
Current, DC [A]	0.55	1.1	0.51	High current
Rad Loss [MeV]	0.007	0.007	3.9	
Total Voltage [MV]	16	16	>32	
# of Cavities	8	8	16	
RF Power [kW]*	300	450	300-500	High Power
Frequency [MHz]	400			

^{*}Using ½-detuning: $R/Q=45\Omega$ &QL=60k, V=2 MV/cavity

FCC -hh, Stability

Bunch length = 1 nsBunch spacing = 5 ns, 25 ns Frequency = 400 MHz

Optimum filling factor (bucket losses vs. instability threshold) Single bunch instability, loss of landau damping

For example: 16 MV ($\epsilon_{_{\!L}}\!\!=\!\!7.0$ eVs) ightarrow 0.2 Ω (LHC \sim 0.1 Ω)

Continuous longitudinal blow necessary due to sync radiation 2nd harmonic system may be necessary, not considered here

FCC -hh, RF

Inject, capture & ramp 10600 bunches 3.3 – 50 TeV Store 50 TeV beams

Keep peak power & voltage <u>constant</u>

$$\Delta f = \frac{1}{4} I_b \frac{R/Q}{V_{RF}} f_{RF}$$

 $\frac{1}{2}$ - detuning is -3.1 kHz @0.51A, at 2 MV Remember that revolution freq (100 km) = 3 kHz

Will excite strong coupled bunch instabilities (feedback!)
Synchrotron freq. is 2.9 Hz! RF Noise may become an issue

FCC -hh, RF Power

Additional 4.5 MW total power to ramp the beam (+ synchrotron radiation power)

* Possibly requires variable coupler

If beam current increases, the ramp rate must proportionally increase

FCC -hh, Energy Ramp

A simple RF program during the energy ramp (30 min) Energy ramp is the dominant factor, optimization feasible

Present LHC RF System

FCC -hh: Atleast 2-3 times the LHC system & increased power handling capacity to $\sim\!500$ kW – CW is necessary

300 kW LHCVariable Coupler4-HOM Couplers

300 kW Klystron LHC 400 MHz

Available Power Sources

Handful of sources available at low freq with high power CW <u>SSA</u> in this power range (& low noise) could be expected in 2 decades (?)

FCC -ee, RF

The maximum energy (physics) \rightarrow appropriate circumference (sync radiation) Radiation loss + energy acceptance \rightarrow required voltage Available power (\sim 50 MW) \rightarrow maximum current at each energy

Parameters, FCC-ee

Main goal to provide Higgs \sim 5-30 \times 10³⁴ cm⁻²s⁻¹ (in 2-phases) From LEP2 \rightarrow Extend energy \sim factor 2 & current by several orders

	LEP2	FCC-Z	FCC-W	FCC-H	FCC-T
Energy [GeV]	104	45.5	80	120	175
Current [A]	0.003	1.45	0.152	0.03	0.0066
Rad Loss [GV]	3.34	0.03	0.33	1.67	7.55
Total Voltage [GV]	3.5	2.5	4.0	5.5	11.0
Frequency [MHz]	352.2	400.79			
Harmonic #	31320	133689			

2nd harmonic is not considered but maybe needed

FCC-ee, RF & Staging

Large variation in detuning angle (Z-energy > factor 4. f_{rev})

Extremely large HOM power for high current \rightarrow limit on number of cells

Existing Cavity Options

Frequency: 350-500 MHz

352 MHz: LEP, Nb-Cu

352 MHz: Bulk Nb Variant

400 MHz: LHC, Nb-Cu

500 MHz: CESR-B, KEK-B

LEP Experience, Nb/Cu

One of the largest SRF installation to date, the only to successfully exploit thin-film technology to record energies

LEP 2 SC-Cavity Performance

Mean value of approximately 7.2 MV/cavity \rightarrow 12 MV/cavity (4-cells) We assume same performance for a 4-cell equivalent

Cavity Options, 400 MHz

2+2 cells is assumed as a reference – study ongoing Minimize beam loading & HOM power

FCC ee, RF Layout

Layout Options, 4-Cell Equivalent

FCC-ee, RF Power

At optimum coupling at QL $\sim 10^6-10^7$, Power of ~ 100 kW Z-nominal is most demanding case – RF staging

FCC-ee, RF Power Options

LEP 1.3 MW Klystrons driving 8 Cavities

But, single source failure leads to large voltage drop (LEP ~ 100 MV)

For FCC -ee

High efficiency klystrons using core oscillation method (Lingwood et al.) Multibeam IOT development (Morten et al., ESS)

Single source (\sim 100 kW range), single cavity (IOT & SSA) more appropriate Low RF noise & RF distribution system needs careful study

Loss Factor vs Bunch Length

*Remember: 400 \rightarrow 800 MHz: approx x1.5 increase in # of cells

Parameters, FCC-ee

Z-nominal is most demanding case – input power & HOM power Higher freqs. become <u>incompatible</u> with high current case

	FCC-Z	FCC-W	FCC-H	FCC-T
Energy [GeV]	45.5	80	120	175
Beam Current [mA]	1450	152	30	6.6
Voltage [MV, 2+2 Cells]	3.57	5.71	7.85	7.85
Opt Detuning [kHz]	-13.6	-0.89	-0.12	-0.02
QL, opt	0.7×10^6	2.7×10^{6}	5.3×10^{6}	1.0×10^7
Input Power [kW]	100	72	72	36
HOM Power [kW]	29	1.2	0.15	0.1

HOM Power Extraction

Two known solutions for HOM extraction

Cornell/KEKB like ferrites, 300K ~10 kW (approx 8°C/kW temp rise)

LEP/LHC like loops, 4.5K ~1 kW maximum

Narrow-band

Parameters, FCC -he

Goal: Luminosity $> 1 \text{x} 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

LHeC design study is the reference baseline for FCC -he

Option 1: Use the LHeC-ERL to collide 60 GeV on 50 TeV

Option 2: Co-existing ee & hh in the FCC ring upto 200 GeV on 50 TeV

	LHeC-ERL (Electrons)	LHC (Protons)	FCC (Protons)
Energy [TeV]	0.06	7.0	50
Current, DC [A]	0.15 (6-passes)	1.1	0.51
Total Voltage/turn [MV]	2000	16	32
# of Cavities	1069	8	16
RF Power [kW]*	~25	300	340

^{*} RF power for ERL linac (\sim 20 Hz detuning, QL= 3×10^7)

ERL Option, FCC -he

Energy: 60 GeV

Number of passes: 6

Beam current: 6.6-25.6 mA

Two 10 GeV linacs

Frequency: 801.58 MHz (h=20)

Voltage: 18.7 MV/cavity

Cryo losses: ($\sim 25 \text{ MW } @3 \times 10^{10}$)

Basic unit: 5-cell cavity into 4-cavity module

ERL Option, FCC -he

Energy recovery after total 6 passes: 95.2 %

Sync radiation loss: 2.88 GeV (73.6 MW accumulated beam power)

Extra power for finite bandwidth of ERL cavities (~15 MW)

Note: ERL in the LHC tunnel or FCC tunnel would reduce the beam power by $\times 3-10$

Why Now?

Next Steps

Proton-proton

Approximately 2-3 times the LHC RF (400 MHz, 32-50 MV, 500 kW) Heavy R&D on RF power chain, FPC, low noise amplifiers, feedback

Electron-Positron

Most challenging! \sim 3 times LEP RF (2.5-11 GV, 400 MHz) High Q₀ (thin films), low impedance, high power HOM coupler

Electron-Ion

60 GeV-ERL feasible, power 100+ MW (High $\rm Q_{_0} \sim 10^{11}$ is essential) "ERL" in FCC-ring will be optimum (+ top up injector)

Additional Slides: FCC -hh, RF

Assume: 16 Cavities/beam with 500 kW/cavity
Injection, 3.3 TeV (16 MV capture voltage)
Ramp rate ~30 min, ~ 9MeV/turn, Power = 4.5 MW/beam
Top energy, rad loss 3.9 MeV (32 MV total)

Transverse Loss Factor vs Bunch Length

$$k_{(trans)} \propto \frac{1}{R_{iris}^3} \sqrt{gap.\sigma_z N_{cells}}$$

Limiting factor for transverse instabilites. 400 MHz with large aperture is clearly beneficial

Longitudinal Loss Factors

$$P_{ave} = (k_{loss}Q)I_{beam}$$

1 V/pC ~42 kW of HOM power /cavity 4-cell cavities starts to become unfeasible

Impedance Spectrum, Longitudinal

Impedance Spectrum, Transverse

Cryogenic Estimate, FCC-hh

Assume for FCC \sim 25W @4.5K, 2MV (dynamic)/cavity \sim 45W @4.5K (static+dynamic)/cavity

Total ~1.5 kW @4.5K (32 cavities − 2 beams) – not very big

Cryogenic Losses, FCC-ee

Freq [MHz]	400	800
Eacc [MV/m]	10	17
V/cav [MV]	15	11
# of cells	4	5
R/Q	297	443
G	297	282
Q0	3×10 ⁹	1×10 ⁹
Rs	99	280
Cavity losses [W]	253	508

At 800 MHz, R_{BCS} =250 n Ω

 Q_0 increase beyond 10^9 difficult while at 400 MHz easier

(2+2) cells @400 MHz \sim 126W (for 15MV total, for approx 30% more length),

ERL, Power Options

Good experience with 800 MHz IOTs (~60 kW) for the SPS 3rd harmonic system

Chain of 8 IOTs installed powering two cavities in the SPS

