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Table 2: Goal Frequencies as Measured with Electric 
Boundary for Various Stages of ‘Smart-bell’ Fabrication 

Step Goal 
Freq. 

(MHz) 

Weld shrinkage 
(mm) 

Half cell 1272.49 0.45 
Smart bell (inner) 1274.50 0.30 
Smart bell with pipe 
(power) 

1287.19 0.30 

Smart bell  with pipe 
(tuner) 

1286.73 0.30 

2x inner cells (π) 1286.50 0.30 
3x inner cells (π) 1292.59 0.30 
4x inner cells (π) 1295.13 0.30 
5x inner cells (π) 1296.39 0.30 
6x inner cells (π) 1297.09 0.30 
7x inner cells (π) 1297.53 0.30 
Completed cavity (π) 1298.81 N/A 

Manufacturing and Frequency Tuning Steps 
There are three kinds of ‘half-cells’ in the 9-cell cavity: 

16 inner ‘half-cells’, one for ‘power’ (coupler) end and 
one for ‘tuner’ (opposite to coupler) end. They are formed 
to have excess length on both the iris and equator for 
trimming, both to true the surface and to adjust the 
frequency. Machining allowances of 1.5 mm and 1.05 
mm are used for each of the irises and equators 
respectively. The fabrication tuning strategy is to measure 
the ‘half-cell’ frequency with the RF jig (Fig. 5), compare 
the measured value with the goal frequency and trim the 
equator to reach the frequency goal assuming some weld 
shrinkage. 
From the first batches of ‘half-cells’ it was determined 
that the resonant frequency is well correlated with length 
(Fig. 8); it means that the forming process has sufficient 
shape reproducibility (due to the new forming die). After 
the first series the ‘half-cell’ RF measurement was 
abandoned and equator of the ‘half-cell’ was trimmed to a 
length of 60.25 mm to get 1.5 mm allowance for iris.  

 

 

Figure 8: Frequency monitoring data for TRIUMF-
PAVAC cavities production. 

Next the inner ‘smart-bells’ are welded, the frequency 
measured (Fig. 6) and the two iris edges trimmed equally 
to reach the frequency goal. Our experience is that the 
weld shrinkage is so reproducible that typically a 

common iris trim is requested for a batch of inner cells. 
The multi-cell is welded one cell at a time and the 
stiffening ring is added after each new cell. The iris weld 
is inspected and polished if required.  

Iris edge machining allowance isn’t effective for 
‘power’ and ‘tuner’ ‘smart-bells’ frequency tuning 
because the iris forms the start of a cut-off waveguide for 
the operating mode. In this case RF jigs (Fig. 5) are used 
for the end ‘half-cell’ and inner ‘half-cell’ measurements 
and then we are doing equator trims to reach the goal 
frequency. To provide better frequency measurements we 
assemble the iris with a cut-off beam pipe. After equator 
welding the end ‘smart-bell’ is tuned by trimming the 
inner iris. 

Frequency data recorded during ARIEL1 and ARIEL2 
cavity production is presented in Fig. 9 in comparison 
with frequency goals (pi-modes), calculated with Comsol 
2D RF model. The horizontal axis shows production steps 
and sub-assemblies: steps 1, 2 and 3 correspond to power, 
tuner end and inner ‘smart-bells’; steps 4-9 correspond to 
sub-assemblies of inner ‘smart-bells’ of  from two to 
seven cells; steps 10 and 11 corresponds to the  final sub-
assembly of 7 inner ‘smart-bells’ with tuner and power 
‘smart-bells’. ARIEL 1 was delivered with a frequency 
just 0.8 MHz below the goal. ARIEL 2 was 1.75 MHz 
below the goal. Both cavities were tuned to the goal 
frequency and field flattened to better than 95% by plastic 
deformation on a warm tuning and bead pull stand. 
ARIEL 3 and 4 are now in production.  
 

 

Figure 9: Frequency monitoring data for TRIUMF-
PAVAC cavities production. 

CONCLUSIONS 
The new ‘smart-bell’ concept of multi-cell cavity 

fabrication with interleaved equator edges has been 
developed with PAVAC with the goal to have better 
control over the equator weld. In addition a new forming 
die has been developed to achieve less stress in the 
material and more shape reproducibility. All fabrication 
procedures, including machining, forming, pre-weld 
etching, welding, and frequency tuning were completed 
for this new variant of nine-cell cavity fabrication. Two 9-
cell TRIUMF-PAVAC Nb cavities are completed, and the 
next two cavities are in the process of fabrication. 
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