Paper | Title | Page |
---|---|---|
TUP067 | Hydrogen Saturation and the Thermal Conductivity of Superconducting Niobium | 589 |
|
||
Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics, through Grant No. DE-S0004222 The thermal conductivity k of Nb at less than 3 K is dominated by phonon transport. In Nb with sufficiently few lattice imperfections, a maximum in k occurs at 1.8 K, called the phonon peak (PP). A large PP is desired to reduce potential local hot spots and contributes to an increased Q factor. The magnitude of the PP is sensitive to SRF cavity manufacturing processes. The effect of interstitial hydrogen on the magnitude of the PP is examined by subjecting two bicrystal Nb specimens to 300 C for 1 h in a 75% H2, 25% N2 atmosphere at 0.5 atm. Prior to hydrogen infusion, specimen 1 was heated to 800 C for 2 h, while specimen 2 was heated to 1100 C for 4 h. Both specimens displayed a 25% reduction in the PP due to the additional hydrogen, independent of their crystal orientations and heat treatment histories. An 800 C vacuum heating for 2 h was found to be sufficient to recover the PP in specimen 1, while an 1100 C heating for 4 h was required to recover the PP in one of the grains of specimen 2. The results suggest that hydrogen trapped in the Nb lattice will degas when the Nb is heated to at least the temperature to which it was heated at prior to the hydrogen infusion step. |
||
MOP033 | Quality Assurance and Acceptance Testing of Niobium Material for Use in the Construction of the Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU) | 174 |
|
||
Funding: Work supported by US DOE Cooperative Agreement DE-SC0000661 and Michigan State University Niobium is the current material of choice for the fabrication of superconducting radio frequency (SRF) cavities used in SRF based accelerators. Although niobium specifications for this application have been well established, material properties of as-received materials can still vary substantially. As required for the FRIB accelerator, large volumes (60,000 lbs) of niobium materials (sheet, tube, and flange) have been contracted to several niobium vendors. The FRIB cavity designs require very large niobium sheets, increasing the difficulty in fabrication and potential for contamination. FRIB has developed and initiated plans to control niobium specifications and perform incoming acceptance checks to ensure quality is maintained. Acceptance results from the first niobium shipment will be presented, looking at several production lots from the same vendor and across multiple vendors. Non-conforming results were observed and will be discussed including follow-up investigations and mitigation strategies to improve quality of future shipments. |
||