Author: Wong, M.
Paper Title Page
TUP030
Elimination of post annealing chemistry: a route to high Q cavities and processing simplification  
 
  • A. Grassellino, A.C. Crawford, R.D. Kephart, O.S. Melnychuk, A. Romanenko, A.M. Rowe, D.A. Sergatskov, M. Wong
    Fermilab, Batavia, USA
  • M. Checchin
    INFN/LNL, Legnaro (PD), Italy
  • Y. Trenikhina
    IIT, Chicago, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
We investigate the effect of high temperature treatments followed by only high-pressure water rinse (HPR) of superconducting radio frequency (SRF) niobium cavities. The objective is to provide a cost effective alternative to the typical cavity processing sequence, by eliminating the material removal step post furnace treatment while preserving or improving the RF performance. The studies have been conducted in the temperature range 800-1000C for different conditions of the starting substrate: large grain and fine grain, electro-polished (EP) and centrifugal barrel polished (CBP) to mirror finish. An interesting effect of the grain size on the performances is found. Cavity results and samples characterization show that furnace contaminants cause poor cavity performance, and a practical solution is found to prevent surface contamination. Extraordinary values of residual resistances ~ 1 nOhm and below are then consistently achieved for the contamination-free cavities. We explore the addition of a small partial pressure of gas during the anneal to further increase the cavity quality factor by reducing the BCS resistance.
 
 
TUP050
R&D Program for 650 MHz Niobium Cavities for Project X  
 
  • A. Grassellino, A.C. Crawford, C.M. Ginsburg, R.D. Kephart, T.N. Khabiboulline, O.S. Melnychuk, A. Romanenko, A.M. Rowe, D.A. Sergatskov, A.I. Sukhanov, M. Wong, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
We report the first test results of several 650 MHz single cell niobium cavities processed at Fermilab. The target for the 5-cell 650 MHz cavities for Project X is CW operation at magnetic peak field ~ 60-70 mT, making high quality factors at medium accelerating fields the main goal of the surface processing R&D. We will discuss how the performance vary with the different surface processing and parameters/criteria of choice for the final surface preparation sequence.