Author: Templeton, N.
Paper Title Page
MOP087 Conceptual Design of a Cryomodule for Compact Crab Cavities for Hi-Lumi LHC 353
 
  • S.M. Pattalwar, P.A. McIntosh, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Burt
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • O. Capatina
    CERN, Geneva, Switzerland
  • B.D.S. Hall
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • T.J. Jones, N. Templeton
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • T.J. Peterson
    Fermilab, Batavia, USA
 
  A prototype Superconducting (RF) cryomodule, comprising multiple compact crab cavities is foreseen to realise a local crab crossing scheme for the “Hi-Lumi LHC”, a project launched by CERN to increase the luminosity performance of LHC. A cryomodule with two cavities will be initially installed and tested on the SPS drive accelerator at CERN to evaluate performance with high-intensity proton beams. A series of boundary conditions influence the design of the cryomodule prototype, arising from; the complexity of the cavity design, the requirement for multiple RF couplers, the close proximity to the second LHC beam pipe and the tight space constraints in the SPS and LHC tunnels. As a result, the design of the helium vessel and the cryomodule has become extremely challenging. This paper assesses some of the critical cryogenic and engineering design requirements and describes an optimised cryomodule solution for the tests with SPS.  
 
THP036 Design of a 4 Rod Crab Cavity Cryomodule System for HL-LHC 982
 
  • G. Burt, B.D.S. Hall
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • T.J. Jones, N. Templeton
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • P.A. McIntosh, S.M. Pattalwar, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • T.J. Peterson
    Fermilab, Batavia, USA
  • L.A. Wright
    CERN, Geneva, Switzerland
 
  The LHC requires compact SRF crab cavities for the HL-LHC and 3 potential solutions are under consideration. One option is to develop a 4 rod cavity utilising for quarter wave rods to maintain a dipole field. The cavity design has been developed including power and LOM/HOM couplers have been developed, as well as a conceptual design of a complete cryomodule system including ancillaries and this is presented. The cryomodule is designed to allow easy access during testing and uses a novel support system and contains the opposing beamline section to fit inside the LHC envelope.